Skip to main content

Performance of a Modified DDES for the Near Stall Flow Past a NACA0015 Airfoil

  • Conference paper
  • First Online:
Progress in Hybrid RANS-LES Modelling

Abstract

A modification of DDES with adaptive coefficient CDES (DDES-AC) is proposed to deal with the delay transition from RANS to LES in the stall flows over a NACA0015 airfoil. The coefficient CDES is adaptive with the flow patterns, quasi-2D shear layer or 3D full developed separation, which helps to reduce the eddy viscosity in the separated shear layer. The performance of DDES-AC is validated by computing the flows over a NACA005 airfoil with mild trailing edge separation and during dynamic stall. It is found that the “grey area” in the original DDES is exacerbated in the simulation of dynamic stall. The DDES-AC is effective in accelerating the transition from RANS to LES and alleviating the “grey area” to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, X., Lu, C., Liang, S., Godbole, A., Chen, Y.: Vibration-induced aerodynamic loads on large horizontal axis wind turbine blades. Appl. Energy 185, 1109–1119 (2017)

    Article  Google Scholar 

  2. Hashem, I., Mohamed, M.H.: Aerodynamic performance enhancements of H-rotor Darrieus wind turbine. Energy 142, 531–545 (2018)

    Article  Google Scholar 

  3. Brian, H., Ger, K., Andrew, C.: Numerical simulation of a vertical axis wind turbine airfoil experiencing dynamic stall at high Reynolds numbers. Comput. Fluids 149, 12–30 (2017)

    Article  MathSciNet  Google Scholar 

  4. Carr, L.W., Chandrasekhara, M.S.: Compressibility effects on dynamic stall. Prog. Aerosp. Sci. 32, 523–573 (1996)

    Article  Google Scholar 

  5. Wang, L., Fu, S.: Detached-eddy simulation of flow past a pitching NACA 0015 airfoil with pulsed actuation. Aerosp. Sci. Technol. 69, 123–135 (2017)

    Article  Google Scholar 

  6. Durrani, N., Qin, N.: Behavior of detached-eddy simulations for mild airfoil trailing-edge separation. J. Aircr. 48(1), 193–202 (2011)

    Article  Google Scholar 

  7. Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: An enhanced version of DES with rapid transition from RANS to LES in separated flows. Flow Turbul. Combust. 95, 709–737 (2015)

    Article  Google Scholar 

  8. Guseva, E.K., Garbaruk, A.V., Strelets, M.K.: Assessment of delayed DES and improved delayed DES combined with a shear-layer-adapted subgrid length-scale in separated flows. Flow Turbul. Combust. 98, 481–502 (2017)

    Article  Google Scholar 

  9. Mockett, C., Fuchs, M., Garbaruk, A., Shur, M., Spalart, P.R., Strelets, M., Thiele, F., Travin, A.: Two non-zonal approaches to accelerate RANS to LES transition of free shear layers in DES. In: Progress in Hybrid RANS-LES Modelling. Springer International Publishing, pp. 187–201 (2015)

    Google Scholar 

  10. Menter, F.: Stress-blended eddy simulation (SBES)-a new paradigm in hybrid RANS-LES modeling. In: Hoarau, Y., et al. (eds.) Progress in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 137, pp. 27–37 (2018)

    Google Scholar 

  11. Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62, 183–200 (1999)

    Article  Google Scholar 

  12. Gritskevich, M.S., Garbaruk, A.V., Schütze, J., Menter, F.R.: Development of DDES and IDDES formulations for the k-ω shear stress transport model. Flow Turbul. Combust. 88, 431–449 (2012)

    Article  Google Scholar 

  13. Liu, J., Zhu, W.Q., Xiao, Z.X., et al.: DDES with adaptive coefficient for stalled flows past a wind turbine airfoil. Energy 161, 846–858 (2018)

    Article  Google Scholar 

  14. Rogallo, R.S., Moin, P.: Numerical simulation of turbulent flows. Annu. Rev. Fluid Mech. 16, 99–137 (1984)

    Article  Google Scholar 

  15. Lilly, D.K.: The Representation of Small Scale Turbulence in Numerical Simulation Experiments. Lecture Notes on Turbulence. World Scientific, pp. 171–218 (1987)

    Google Scholar 

  16. Deardorff, J.W.: A numerical study of three-dimensional turbulent channel flow at large Reynolds number. J. Fluid Mech. 41, 453–480 (1970)

    Article  Google Scholar 

  17. Simon, F., Deck, S., Guillen, P.: Reynolds-averaged Navier-Stokes/large-Eddy simulations of supersonic base flow. AIAA J. 44(11), 2578–2590 (2006)

    Article  Google Scholar 

  18. Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids, 085106-1-13 (2011)

    Google Scholar 

  19. Cui, W.Y., Liu, J., Sun, Y.H., Li, Q.B., Xiao, Z.X.: Airbrake controls of pitching moment and pressure fluctuation for an oblique tail fighter model. Aerosp. Sci. Technol. 81, 294–305 (2018)

    Article  Google Scholar 

  20. Piziali, R.A.: 2D and 3D oscillating wing aerodynamics for a range of angles of attack including stall. NASA TM 4632 (1994)

    Google Scholar 

  21. Szydlowski, J., Costes, M.: Simulation of flow around a static and oscillating in pitch NACA0015 airfoil using URANS and DES. ASME. ASME Proc. 2, 891–908 (2004)

    Google Scholar 

  22. Liu, Z., Yang, Y.J., Zhou, W.J., Gong, A.L.: Study of unsteady separation flow around airfoil at high angle of attack using hybrid RANS-LES method. Acta Aeronaut. Astronaut. Sinica 35(2), 372–380 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11772174 and No. 91852113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiang Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Zhu, W., Xiao, Z. (2020). Performance of a Modified DDES for the Near Stall Flow Past a NACA0015 Airfoil. In: Hoarau, Y., Peng, SH., Schwamborn, D., Revell, A., Mockett, C. (eds) Progress in Hybrid RANS-LES Modelling . Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 143. Springer, Cham. https://doi.org/10.1007/978-3-030-27607-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27607-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27606-5

  • Online ISBN: 978-3-030-27607-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics