Skip to main content

Radiological Evaluation of the Lumbar Spine

  • Chapter
  • First Online:
  • 1590 Accesses

Abstract

Imaging plays a crucial role in the evaluation of the lumbar spine. The cornerstones of the radiological evaluation of the spine are radiography, computed tomography (CT), and magnetic resonance imaging (MRI). Each of these modalities provides different and often complementary information about lumbar spine pathology. An understanding of these differences and a familiarity with the normal and abnormal imaging appearance of the lumbar spine are critical for appropriate diagnosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ledermann HP, Schweitzer ME, Morrison WB, Carrino JA. MR imaging findings in spinal infections: rules or myths? Radiology. 2003;228(2):506–14.

    PubMed  Google Scholar 

  2. Sandhu FS, Dillon WP. Spinal epidural abscess: evaluation with contrast-enhanced MR imaging. AJNR Am J Neuroradiol. 1991;12(6):1087–93.

    CAS  PubMed  Google Scholar 

  3. Numaguchi Y, Rigamonti D, Rothman MI, Sato S, Mihara F, Sadato N. Spinal epidural abscess: evaluation with gadolinium-enhanced MR imaging. Radiographics. 1993;13(3):545–59; discussion 559–60.

    CAS  PubMed  Google Scholar 

  4. Kim H, Kim HS, Moon ES, Chung TS, Song HT, Suh JS, et al. Scoliosis imaging: what radiologists should know. Radiographics. 2010;30(7):1823–42.

    PubMed  Google Scholar 

  5. Göçen S, Havitçioglu H. Effect of rotation on frontal plane deformity in idiopathic scoliosis. Orthopedics. 2001;24(3):265–8.

    PubMed  Google Scholar 

  6. Tauchi R, Tsuji T, Cahill PJ, Flynn JM, Flynn JM, Glotzbecker M, et al. Reliability analysis of Cobb angle measurements of congenital scoliosis using X-ray and 3D-CT images. Eur J Orthop Surg Traumatol. 2016;26(1):53–7.

    PubMed  Google Scholar 

  7. Langensiepen S, Semler O, Sobottke R, Fricke O, Franklin J, Schönau E, et al. Measuring procedures to determine the Cobb angle in idiopathic scoliosis: a systematic review. Eur Spine J. 2013;22(11):2360–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Koç T, Lam KS, Webb JK. Are intraspinal anomalies in early onset idiopathic scoliosis as common as once thought? A two centre United Kingdom study. Eur Spine J. 2013;22(6):1250–4.

    PubMed  Google Scholar 

  9. Zhang W, Sha S, Xu L, Liu Z, Qiu Y, Zhu Z. The prevalence of intraspinal anomalies in infantile and juvenile patients with “presumed idiopathic” scoliosis: a MRI-based analysis of 504 patients. BMC Musculoskelet Disord. 2016;17:189.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dobbs MB, Lenke LG, Szymanski DA, Morcuende JA, Weinstein SL, Bridwell KH, et al. Prevalence of neural axis abnormalities in patients with infantile idiopathic scoliosis. J Bone Joint Surg Am. 2002;84-A(12):2230–4.

    Google Scholar 

  11. Pahys JM, Samdani AF, Betz RR. Intraspinal anomalies in infantile idiopathic scoliosis: prevalence and role of magnetic resonance imaging. Spine. 2009;34(12):E434–8.

    PubMed  Google Scholar 

  12. Segebarth B, Kurd MF, Haug PH, Davis R. Routine upright imaging for evaluating degenerative lumbar stenosis: incidence of degenerative spondylolisthesis missed on supine MRI. J Spinal Disord Tech. 2015;28(10):394–7.

    PubMed  Google Scholar 

  13. Câmara JR, Keen JR, Asgarzadie F. Functional radiography in examination of spondylolisthesis. AJR Am J Roentgenol. 2015;204(4):W461–9.

    PubMed  Google Scholar 

  14. Tallarico RA, Madom IA, Palumbo MA. Spondylolysis and spondylolisthesis in the athlete. Sports Med Arthrosc Rev. 2008;16(1):32–8.

    PubMed  Google Scholar 

  15. Watters WC, Bono CM, Gilbert TJ, Kreiner DS, Mazanec DJ, Shaffer WO, et al. An evidence-based clinical guideline for the diagnosis and treatment of degenerative lumbar spondylolisthesis. Spine J. 2009;9(7):609–14.

    PubMed  Google Scholar 

  16. Butt S, Saifuddin A. The imaging of lumbar spondylolisthesis. Clin Radiol. 2005;60(5):533–46.

    CAS  PubMed  Google Scholar 

  17. Ulmer JL, Elster AD, Mathews VP, King JC. Distinction between degenerative and isthmic spondylolisthesis on sagittal MR images: importance of increased anteroposterior diameter of the spinal canal (“wide canal sign”). AJR Am J Roentgenol. 1994;163(2):411–6.

    CAS  PubMed  Google Scholar 

  18. Teplick JG, Laffey PA, Berman A, Haskin ME. Diagnosis and evaluation of spondylolisthesis and/or spondylolysis on axial CT. AJNR Am J Neuroradiol. 1986;7(3):479–91.

    CAS  PubMed  Google Scholar 

  19. Kobayashi A, Kobayashi T, Kato K, Higuchi H, Takagishi K. Diagnosis of radiographically occult lumbar spondylolysis in young athletes by magnetic resonance imaging. Am J Sports Med. 2013;41(1):169–76.

    PubMed  Google Scholar 

  20. Posner I, White AA, Edwards WT, Hayes WC. A biomechanical analysis of the clinical stability of the lumbar and lumbosacral spine. Spine. 1982;7(4):374–89.

    CAS  PubMed  Google Scholar 

  21. Wiltse LL. The etiology of spondylolisthesis. J Bone Joint Surg Am. 1962;44-A:539–60.

    CAS  PubMed  Google Scholar 

  22. Vogler JB, Murphy WA. Bone marrow imaging. Radiology. 1988;168(3):679–93.

    PubMed  Google Scholar 

  23. Ricci C, Cova M, Kang YS, Yang A, Rahmouni A, Scott WW Jr, et al. Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology. 1990;177(1):83–8.

    CAS  PubMed  Google Scholar 

  24. Babyn PS, Ranson M, McCarville ME. Normal bone marrow: signal characteristics and fatty conversion. Magn Reson Imaging Clin N Am. 1998;6(3):473–95.

    CAS  PubMed  Google Scholar 

  25. Sze G, Bravo S, Baierl P, Shimkin PM. Developing spinal column: gadolinium-enhanced MR imaging. Radiology. 1991;180(2):497–502.

    CAS  PubMed  Google Scholar 

  26. Dawson KL, Moore SG, Rowland JM. Age-related marrow changes in the pelvis: MR and anatomic findings. Radiology. 1992;183(1):47–51.

    CAS  PubMed  Google Scholar 

  27. Kamholtz R, Sze G. Current imaging in spinal metastatic disease. Semin Oncol. 1991;18(2):158–69.

    CAS  PubMed  Google Scholar 

  28. Yang H-L, Liu T, Wang X-M, Xu Y, Deng S-M. Diagnosis of bone metastases: a meta-analysis comparing 18FDG PET, CT, MRI and bone scintigraphy. Eur Radiol. 2011;21(12):2604–17.

    PubMed  Google Scholar 

  29. Costelloe CM, Rohren EM, Madewell JE, Hamaoka T, Theriault RL, Yu TK, et al. Imaging bone metastases in breast cancer: techniques and recommendations for diagnosis. Lancet Oncol. 2009;10(6):606–14.

    PubMed  Google Scholar 

  30. Talbot JN, Paycha F, Balogova S. Diagnosis of bone metastasis: recent comparative studies of imaging modalities. Q J Nucl Med Mol Imaging. 2011;55(4):374–410.

    CAS  PubMed  Google Scholar 

  31. Mahnken AH, Wildberger JE, Adam G, Stanzel S, Schmitz-Rode T, Günther RW, et al. Is there a need for contrast-enhanced T1-weighted MRI of the spine after inconspicuous short tau inversion recovery imaging? Eur Radiol. 2005;15(7):1387–92.

    PubMed  Google Scholar 

  32. Baur A, Stäbler A, Bartl R, Lamerz R, Scheidler J, Reiser M. MRI gadolinium enhancement of bone marrow: age-related changes in normals and in diffuse neoplastic infiltration. Skelet Radiol. 1997;26(7):414–8.

    CAS  Google Scholar 

  33. Montazel J-L, Divine M, Lepage E, Kobeiter H, Breil S, Rahmouni A. Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging. Radiology. 2003;229(3):703–9.

    PubMed  Google Scholar 

  34. Huvos A. Hemangioma, lymphangioma, angiomatosis/lymphangiomatosis, glomus tumor. In: Bone tumors: diagnosis, treatment, and prognosis. 2nd ed. Philadelphia: Saunders; 1991. p. 553–78.

    Google Scholar 

  35. Murphey MD, Fairbairn KJ, Parman LM, Baxter KG, Parsa MB, Smith WS. From the archives of the AFIP. Musculoskeletal angiomatous lesions: radiologic-pathologic correlation. Radiographics. 1995;15(4):893–917.

    CAS  PubMed  Google Scholar 

  36. Gaudino S, Martucci M, Colantonio R, Lozupone E, Visconti E, Leone A, et al. A systematic approach to vertebral hemangioma. Skelet Radiol. 2015;44(1):25–36.

    Google Scholar 

  37. Patel ND, Broderick DF, Burns J, Deshmukh TK, Fries IB, Harvey HB, et al. ACR appropriateness criteria low back pain. J Am Coll Radiol. 2016;13(9):1069–78.

    PubMed  Google Scholar 

  38. Kumar Y, Hayashi D. Role of magnetic resonance imaging in acute spinal trauma: a pictorial review. BMC Musculoskelet Disord. 2016;17:310.

    PubMed  PubMed Central  Google Scholar 

  39. Guarnieri G, Izzo R, Muto M. The role of emergency radiology in spinal trauma. Br J Radiol. 2016;89(1061):20150833.

    PubMed  PubMed Central  Google Scholar 

  40. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8(9):1137–48.

    CAS  PubMed  Google Scholar 

  41. Lenchik L, Rogers LF, Delmas PD, Genant HK. Diagnosis of osteoporotic vertebral fractures: importance of recognition and description by radiologists. AJR Am J Roentgenol. 2004;183(4):949–58.

    PubMed  Google Scholar 

  42. Yuh WT, Zachar CK, Barloon TJ, Sato Y, Sickels WJ, Hawes DR. Vertebral compression fractures: distinction between benign and malignant causes with MR imaging. Radiology. 1989;172(1):215–8.

    CAS  PubMed  Google Scholar 

  43. Baker LL, Goodman SB, Perkash I, Lane B, Enzmann DR. Benign versus pathologic compression fractures of vertebral bodies: assessment with conventional spin-echo, chemical-shift, and STIR MR imaging. Radiology. 1990;174(2):495–502.

    CAS  PubMed  Google Scholar 

  44. Jung H-S, Jee W-H, McCauley TR, Ha K-Y, Choi K-H. Discrimination of metastatic from acute osteoporotic compression spinal fractures with MR imaging. Radiographics. 2003;23(1):179–87.

    PubMed  Google Scholar 

  45. Benneker LM, Heini PF, Anderson SE, Alini M, Ito K. Correlation of radiographic and MRI parameters to morphological and biochemical assessment of intervertebral disc degeneration. Eur Spine J. 2005;14(1):27–35.

    PubMed  Google Scholar 

  46. Resnick D. Degenerative diseases of the vertebral column. Radiology. 1985;156(1):3–14.

    CAS  PubMed  Google Scholar 

  47. Griffith JF, Wang Y-XJ, Antonio GE, Choi KC, Yu A, Ahuja AT, et al. Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine. 2007;32(24):E708–12.

    PubMed  Google Scholar 

  48. Sether LA, Yu S, Haughton VM, Fischer ME. Intervertebral disk: normal age-related changes in MR signal intensity. Radiology. 1990;177(2):385–8.

    CAS  PubMed  Google Scholar 

  49. Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology. 1988;166(1 Pt 1):193–9.

    CAS  Google Scholar 

  50. Fardon DF, Williams AL, Dohring EJ, Murtagh FR, Gabriel Rothman SL, Sze GK. Lumbar disc nomenclature: version 2.0: recommendations of the combined task forces of the North American Spine Society, the American Society of Spine Radiology and the American Society of Neuroradiology. Spine J. 2014;14(11):2525–45.

    PubMed  Google Scholar 

  51. Ito M, Incorvaia KM, Yu SF, Fredrickson BE, Yuan HA, Rosenbaum AE. Predictive signs of discogenic lumbar pain on magnetic resonance imaging with discography correlation. Spine. 1998;23(11):1252–8; discussion 1259–60.

    CAS  PubMed  Google Scholar 

  52. Lam KS, Carlin D, Mulholland RC. Lumbar disc high-intensity zone: the value and significance of provocative discography in the determination of the discogenic pain source. Eur Spine J. 2000;9(1):36–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rankine JJ, Gill KP, Hutchinson CE, Ross ER, Williamson JB. The clinical significance of the high-intensity zone on lumbar spine magnetic resonance imaging. Spine. 1999;24(18):1913–9; discussion 1920.

    CAS  PubMed  Google Scholar 

  54. Brinjikji W, Luetmer PH, Comstock B, Bresnahan BW, Chen LE, Deyo RA, et al. Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am J Neuroradiol. 2015;36(4):811–6.

    CAS  PubMed  Google Scholar 

  55. Aprill C, Bogduk N. High-intensity zone: a diagnostic sign of painful lumbar disc on magnetic resonance imaging. Br J Radiol. 1992;65(773):361–9.

    CAS  PubMed  Google Scholar 

  56. Stadnik TW, Lee RR, Coen HL, Neirynck EC, Buisseret TS, Osteaux MJ. Annular tears and disk herniation: prevalence and contrast enhancement on MR images in the absence of low back pain or sciatica. Radiology. 1998;206(1):49–55.

    CAS  PubMed  Google Scholar 

  57. Ross JS, Modic MT, Masaryk TJ. Tears of the annulus fibrosus: assessment with Gd-DTPA-enhanced MR imaging. AJNR Am J Neuroradiol. 1989;10(6):1251–4.

    CAS  PubMed  Google Scholar 

  58. Cottle L, Riordan T. Infectious spondylodiscitis. J Infect. 2008;56(6):401–12.

    PubMed  Google Scholar 

  59. Diehn FE. Imaging of spine infection. Radiol Clin North Am. 2012;50(4):777–98.

    PubMed  Google Scholar 

  60. Mylona E, Samarkos M, Kakalou E, Fanourgiakis P, Skoutelis A. Pyogenic vertebral osteomyelitis: a systematic review of clinical characteristics. Semin Arthritis Rheum. 2009;39(1):10–7.

    CAS  PubMed  Google Scholar 

  61. Zarrouk V, Feydy A, Sallès F, Dufour V, Guigui P, Redondo A, et al. Imaging does not predict the clinical outcome of bacterial vertebral osteomyelitis. Rheumatology (Oxford). 2007;46(2):292–5.

    CAS  Google Scholar 

  62. Euba G, Narváez JA, Nolla JM, Murillo O, Narváez J, Gómez-Vaquero C, et al. Long-term clinical and radiological magnetic resonance imaging outcome of abscess-associated spontaneous pyogenic vertebral osteomyelitis under conservative management. Semin Arthritis Rheum. 2008;38(1):28–40.

    PubMed  Google Scholar 

  63. Kowalski TJ, Layton KF, Berbari EF, Steckelberg JM, Huddleston PM, Wald JT, et al. Follow-up MR imaging in patients with pyogenic spine infections: lack of correlation with clinical features. AJNR Am J Neuroradiol. 2007;28(4):693–9.

    CAS  PubMed  Google Scholar 

  64. Gillams AR, Chaddha B, Carter AP. MR appearances of the temporal evolution and resolution of infectious spondylitis. AJR Am J Roentgenol. 1996;166(4):903–7.

    CAS  PubMed  Google Scholar 

  65. Schellinger D, Wener L, Ragsdale BD, Patronas NJ. Facet joint disorders and their role in the production of back pain and sciatica. Radiographics. 1987;7(5):923–44.

    CAS  PubMed  Google Scholar 

  66. Carrera GF, Haughton VM, Syvertsen A, Williams AL. Computed tomography of the lumbar facet joints. Radiology. 1980;134(1):145–8.

    CAS  PubMed  Google Scholar 

  67. Weishaupt D, Zanetti M, Boos N, Hodler J. MR imaging and CT in osteoarthritis of the lumbar facet joints. Skelet Radiol. 1999;28(4):215–9.

    CAS  Google Scholar 

  68. Ruiz Santiago F, Alcázar Romero PP, López Machado E, García Espona MA. Calcification of lumbar ligamentum flavum and facet joints capsule. Spine. 1997;22(15):1730–4; discussion 1734–5.

    CAS  PubMed  Google Scholar 

  69. Wybier M. Imaging of lumbar degenerative changes involving structures other than disk space. Radiol Clin North Am. 2001;39(1):101–14.

    CAS  PubMed  Google Scholar 

  70. Khan AM, Girardi F. Spinal lumbar synovial cysts. Diagnosis and management challenge. Eur Spine J. 2006;15(8):1176–82.

    PubMed  PubMed Central  Google Scholar 

  71. Boviatsis EJ, Stavrinou LC, Kouyialis AT, Gavra MM, Stavrinou PC, Themistokleous M, et al. Spinal synovial cysts: pathogenesis, diagnosis and surgical treatment in a series of seven cases and literature review. Eur Spine J. 2008;17(6):831–7.

    PubMed  PubMed Central  Google Scholar 

  72. Métellus P, Fuentes S, Adetchessi T, Levrier O, Flores-Parra I, Talianu D, et al. Retrospective study of 77 patients harbouring lumbar synovial cysts: functional and neurological outcome. Acta Neurochir. 2006;148(1):47–54; discussion 54.

    PubMed  Google Scholar 

  73. Tillich M, Trummer M, Lindbichler F, Flaschka G. Symptomatic intraspinal synovial cysts of the Lumbar spine imaging: correlation of MR and surgical findings. Neuroradiology. 2001;43(12):1070–5.

    CAS  PubMed  Google Scholar 

  74. Gran JT, Skomsvoll JF. The outcome of ankylosing spondylitis: a study of 100 patients. Br J Rheumatol. 1997;36(7):766–71.

    CAS  PubMed  Google Scholar 

  75. Jang JH, Ward MM, Rucker AN, Reveille JD, Davis JC Jr, Weisman MH, et al. Ankylosing spondylitis: patterns of radiographic involvement—a re-examination of accepted principles in a cohort of 769 patients. Radiology. 2011;258(1):192–8.

    PubMed  PubMed Central  Google Scholar 

  76. Romanus R, Yden S. Destructive and ossifying spondylitic changes in rheumatoid ankylosing spondylitis (pelvo-spondylitis ossificans). Acta Orthop Scand. 1952;22(2):88–99.

    CAS  PubMed  Google Scholar 

  77. Jevtic V, Kos-Golja M, Rozman B, McCall I. Marginal erosive discovertebral “Romanus” lesions in ankylosing spondylitis demonstrated by contrast enhanced Gd-DTPA magnetic resonance imaging. Skelet Radiol. 2000;29(1):27–33.

    CAS  Google Scholar 

  78. Levine DS, Forbat SM, Saifuddin A. MRI of the axial skeletal manifestations of ankylosing spondylitis. Clin Radiol. 2004;59(5):400–13.

    CAS  PubMed  Google Scholar 

  79. Lacout A, Rousselin B, Pelage J-P. CT and MRI of spine and sacroiliac involvement in spondyloarthropathy. AJR Am J Roentgenol. 2008;191(4):1016–23.

    PubMed  Google Scholar 

  80. Resnick D, Dwosh IL, Goergen TG, Shapiro RF, Utsinger PD, Wiesner KB, et al. Clinical and radiographic abnormalities in ankylosing spondylitis: a comparison of men and women. Radiology. 1976;119(2):293–7.

    CAS  PubMed  Google Scholar 

  81. Hitchon PW, From AM, Brenton MD, Glaser JA, Torner JC. Fractures of the thoracolumbar spine complicating ankylosing spondylitis. J Neurosurg. 2002;97(2 Suppl):218–22.

    PubMed  Google Scholar 

  82. Cooper KL, Beabout JW, Swee RG. Insufficiency fractures of the sacrum. Radiology. 1985;156(1):15–20.

    CAS  PubMed  Google Scholar 

  83. Peh WC, Khong PL, Yin Y, Ho WY, Evans NS, Gilula LA, et al. Imaging of pelvic insufficiency fractures. Radiographics. 1996;16(2):335–48.

    CAS  PubMed  Google Scholar 

  84. Gotis-Graham I, McGuigan L, Diamond T, Portek I, Quinn R, Sturgess A, et al. Sacral insufficiency fractures in the elderly. J Bone Joint Surg Br. 1994;76(6):882–6.

    CAS  PubMed  Google Scholar 

  85. Cabarrus MC, Ambekar A, Lu Y, Link TM. MRI and CT of insufficiency fractures of the pelvis and the proximal femur. Am J Roentgenol. 2008;191(4):995–1001.

    Google Scholar 

  86. Resnick D, Niwayama G, Goergen TG. Comparison of radiographic abnormalities of the sacroiliac joint in degenerative disease and ankylosing spondylitis. AJR Am J Roentgenol. 1977;128(2):189–96.

    CAS  PubMed  Google Scholar 

  87. Bredella MA, Steinbach LS, Morgan S, Ward M, Davis JC. MRI of the sacroiliac joints in patients with moderate to severe ankylosing spondylitis. AJR Am J Roentgenol. 2006;187(6):1420–6.

    PubMed  Google Scholar 

  88. Kang Y, Hong SH, Kim JY, Yoo HJ, Choi JY, Yi M, et al. Unilateral sacroiliitis: differential diagnosis between infectious sacroiliitis and spondyloarthritis based on MRI findings. Am J Roentgenol. 2015;205(5):1048–55.

    Google Scholar 

  89. Karchevsky M, Schweitzer ME, Morrison WB, Parellada JA. MRI findings of septic arthritis and associated osteomyelitis in adults. Am J Roentgenol. 2004;182(1):119–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jad S. Husseini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Husseini, J.S., Chang, C.Y., Palmer, W.E. (2020). Radiological Evaluation of the Lumbar Spine. In: Mao, J. (eds) Spine Pain Care. Springer, Cham. https://doi.org/10.1007/978-3-030-27447-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27447-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27446-7

  • Online ISBN: 978-3-030-27447-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics