Skip to main content

Exogenous Glycinebetaine-Mediated Modulation of Abiotic Stress Tolerance in Plants: Possible Mechanisms

  • Chapter
  • First Online:
Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants

Abstract

Glycinebetaine (GB) is one of the most studied and effective compatible solutes, and the exogenous application of GB can improve the tolerance of numerous plant species to various types of abiotic stresses, such as low temperature, high temperature, salt, drought and heavy metals, thereby enhancing subsequent growth and yield. In this chapter, we summarize our understanding of the research on exogenous GB under abiotic stress as an adaptive mechanism, with particular emphasis on the new insights into the molecular and physiological mechanisms involved in the exogenous GB-mediated modulation of abiotic stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad R, Lim CJ, Kwon SY (2013) Glycine betaine: a versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. Plant Biotechnol Rep 7:49–57

    Google Scholar 

  • Aldesuquy HS, Abbas MA, Abo-Hamed SA, Elhakem AH, Alsokari SS (2012) Glycine betaine and salicylic acid induced modification in productivity of two different cultivars of wheat grown under water stress. J Stress Physiol Biochem 8:72–89

    Google Scholar 

  • Allard F, Houde M, Krol M, Ivanov A, Huner NPA, Sarhan F (1998) Betaine improves freezing tolerance in wheat. Plant Cell Physiol 39:1194–1202

    Article  CAS  Google Scholar 

  • Anjum SA, Saleem MF, Wang LC, Bilal MF, Saeed A (2012) Protective role of glycinebetaine in maize against drought-induced lipid peroxidation by enhancing capacity of antioxidative system. Aust J Crop Sci 6:576–583

    CAS  Google Scholar 

  • Annunziata MG, Ciarmiello LF, Woodrow P, Aversana ED, Carillo P (2019) Spatial and temporal profile of glycinebetaine accumulation in plants under abiotic stresses. Front Plant Sci 10:230

    Article  PubMed  PubMed Central  Google Scholar 

  • Asgher M, Khan NA, Khan MIR, Fatma F, Masood A (2014) Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity. Ecotox Environ Safe 106:54–61

    Article  CAS  Google Scholar 

  • Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimising toxicity of cadmium in plants-role of plant growth regulators. Protoplasma 252:399–413

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycinebetaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Athar HUR, Zafar ZU, Ashraf M (2015) Glycinebetaine improved photosynthesis in canola under salt stress: evaluation of chlorophyll fluorescence parameters as potential indicators. J Agron Crop Sci 201:428–442

    Article  CAS  Google Scholar 

  • Bowman MS, Rohringer R (1970) Formate metabolism and betaine formation in healthy and rust-affected wheat. Can J Bot 48:803–811

    Article  CAS  Google Scholar 

  • Cha-um S, Kirdmanee C (2010) Effect of glycinebetaine on proline, water use, and photosynthetic efficiencies, and growth of rice seedlings under salt stress. Turk J Agric For 34:517–527

    CAS  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance to abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  CAS  PubMed  Google Scholar 

  • Chen THH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505

    Article  CAS  PubMed  Google Scholar 

  • Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    Article  PubMed  CAS  Google Scholar 

  • De Maria S, Puschenreiter M, Rivelli AR (2013) Cadmium accumulation and physiological response of sunflower plants to Cd during the vegetative growing cycle. Plant Soil Environ 59:254–261

    Article  Google Scholar 

  • Duman F, Aksoy A, Aydin Z, Temizgul R (2011) Effects of exogenous glycinebetaine and trehalose on cadmium accumulation and biological responses of an aquatic plant (Lemna gibba L.). Water Air Soil Poll 217:545–556

    Article  CAS  Google Scholar 

  • Einset J, Nielsen E, Connolly EL, Bones A, Sparstad T, Winge P, Zhu JK (2007) Membrane-trafficking RabA4c involved in the effect of glycine betaine on recovery from chilling stress in Arabidopsis. Physiol Plant 130:511–518

    Article  CAS  Google Scholar 

  • Einset J, Winge P, Bones AM, Connolly EL (2008) The FRO2 ferric reductase is required for glycine betaine’s effect on chilling tolerance in Arabidopsis roots. Physiol Plant 134:334–341

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Aziz T, Hussain M, Rehman H, Jabran K, Khan MB (2008a) Glycinebetaine improves chilling tolerance in hybrid maize. J Agron Crop Sci 194:152–160

    Article  CAS  Google Scholar 

  • Farooq M, Basra S, Wahid A, Cheema Z, Cheema M, Khaliq A (2008b) Physiological role of exogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 194:325–333

    Article  CAS  Google Scholar 

  • Flora SJS (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Med Cell Longev 2:191–206

    Article  Google Scholar 

  • Giri J (2011) Glycinebetaine and abiotic stress tolerance in plants. Plant Signal Behav 6:1746–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta N, Thind S (2015) Improving photosynthetic performance of bread wheat under field drought stress by foliar applied glycine betaine. J Agric Sci Technol 17:75–86

    Google Scholar 

  • Gupta N, Thind SK (2019) Foliar application of glycine betaine alters sugar metabolism of wheat leaves under prolonged field drought stress. Proc Natl Acad Sci India Sect B Biol Sci 89:877–884

    Article  Google Scholar 

  • Gururani MA, Venkatesh J, Tran LSP (2015) Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol Plant 8:1304–1320

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Alam MM, Rahman A, Hasanuzzaman M, Nahar K, Fujita M (2014) Exogenous proline and glycinebetaine mediated upregulation of antioxidant defence and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. Biomed Res Int 2014:1–17

    Google Scholar 

  • Hoque MA, Banu MNA, Okuma E, Amako K, Nakamura Y, Shimoishi Y, Murata Y (2007) Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells. J Plant Physiol 164:1457–1468

    Article  CAS  PubMed  Google Scholar 

  • Hoque MA, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y (2008) Proline and glycinebetaine enhance antioxidant defence and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. J Plant Physiol 165:813–824

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Fujita M (2010) Evidence for a role of exogenous glycinebetaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress. Physiol Mol Biol Pla 16:19–29

    Article  CAS  Google Scholar 

  • Hossain MA, Hasanuzzaman M, Fujita M (2010) Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Pla 16:259–272

    Article  CAS  Google Scholar 

  • Hossain MA, Hasanuzzaman M, Fujita M (2011a) Coordinate induction of antioxidant defense and glyoxalase system by exogenous proline and glycinebetaine is correlated with salt tolerance in mung bean. Front Agric China 5:1–14

    Article  Google Scholar 

  • Hossain MA, Teixeira da Silva JA, Fujita M (2011b) Glyoxalase system and reactive oxygen species detoxification system in plant abiotic stress response and tolerance: an intimate relationship. In: Shanker AK, Venkateswarlu B (eds) Abiotic stress/book 1. INTECH Open Access Publisher, Rijeka, pp 235–266

    Google Scholar 

  • Hossain MA, Mostofa MG, Burritt DJ, Fujita M (2014) Modulation of reactive oxygen species and methylglyoxal detoxification systems by exogenous glycinebetaine and proline improves drought tolerance in mustard (Brassica juncea L.). Int J Plant Biol Res 2:1014

    Google Scholar 

  • Hu L, Hu T, Zhang X, Pang H, Fu J (2012) Exogenous glycinebetaine ameliorates the adverse effect of salt stress on perennial ryegrass. J Am Soc Hortic Sci 137:38–46

    Article  CAS  Google Scholar 

  • Jewell MC, Campbell BC, Godwin ID (2010) Transgenic plants for abiotic stress resistance. In: Kole C, Michler C, Abbott AG, Hall TC (eds) Transgenic crop plants. Springer, Berlin, pp 67–132

    Chapter  Google Scholar 

  • Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma 251:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Yu X, Kikuchi A, Asahina M, Watanabe K (2009) Genetic engineering of glycine betaine biosynthesis to enhance abiotic stress tolerance in plants. Plant Biotechnol 26:125–134

    Article  CAS  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Per TS, Khan NA (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 8:e26374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 173:9–18

    Article  CAS  PubMed  Google Scholar 

  • Kotb MA, Elhamahmy MA (2014) Improvement of wheat productivity and their salt tolerance by exogenous glycinebetaine application under saline soil condition for long-term. Zagazig J Agric Res 41:1127–1143

    Google Scholar 

  • Kumar V, Khare T (2015) Individual and additive effects of Na+ and Cl− ions on rice under salinity stress. Arch Agron Soil Sci 61:381–395

    Article  CAS  Google Scholar 

  • Kumar V, Yadav SK (2009) Proline and betaine provide protection to antioxidant and methylglyoxal detoxification systems during cold stress in Camellia sinensis (L.) O. Kuntze. Acta Physiol Plant 31:261–269

    Article  CAS  Google Scholar 

  • Kumar V, Shriram V, Hoque TS, Hasan MM, Burritt DJ, Hossain MA (2017) Glycinebetaine-mediated abiotic oxidative-stress tolerance in plants: physiological and biochemical mechanisms. In: Stress signaling in plants: genomics and proteomics perspective, vol 2. Springer, Cham, pp 111–133

    Google Scholar 

  • Kurepin LV, Ivanov AG, Zaman M, Pharis RP, Allakhverdiev SI, Hurry V, Hüner NPA (2015) Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions. Photosynth Res 126:221–235

    Article  CAS  PubMed  Google Scholar 

  • Kurepin LV, Ivanov AG, Zaman M, Pharis RP, Hurry V, Hüner NP (2017) Interaction of glycine betaine and plant hormones: protection of the photosynthetic apparatus during abiotic stress. In: Photosynthesis: structures, mechanisms, and applications. Springer, Cham, pp 185–202

    Chapter  Google Scholar 

  • Ladyman JAR, Hitz WD, Hanson AD (1980) Translocation and metabolism of glycine betaine by barley plants in relation to water stress. Planta 150:191–196

    Article  CAS  PubMed  Google Scholar 

  • Li SF, Li F, Wang JW, Zhang W, Meng QW, Chen THH, Murata N, Yang XH (2011) Glycinebetaine enhances the tolerance of tomato plants to high temperature during germination of seeds and growth of seedlings. Plant Cell Environ 34:1931–1943

    Article  CAS  PubMed  Google Scholar 

  • Lopez CML, Takahashi H, Yamazaki S (2002) Plant-water relations of kidney bean plants treated with NaCl and foliarly applied glycinebetaine. J Agron Crop Sci 188:73–80

    Article  CAS  Google Scholar 

  • Lou Y, Yang Y, Hy L, Liu H, Xu Q (2015) Exogenous glycinebetaine alleviates the detrimental effect of Cd stress on perennial ryegrass. Ecotoxicology 24:1330–1340

    Article  CAS  PubMed  Google Scholar 

  • Ma QQ, Zou Q, Li Y, Li DQ, Wang W (2004) Amelioration of the water status and improvement of the anti-oxidant enzyme activities by exogenous glycinebetaine in water-stressed wheat seedlings. Acta Agron Sin 30:321–328

    CAS  Google Scholar 

  • Ma QQ, Wang W, Lib YH, Lib DQ, Zou Q (2006) Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. J Plant Physiol 163:165–175

    Article  CAS  PubMed  Google Scholar 

  • Mäkelä P, Mantila J, Hinkkanen R, Pehu E, Peltonen-Sainio P (1996) Effect of foliar applications of glycinebetaine on stress tolerance, growth, and yield of spring cereals and summer turnip rape in Finland. J Agron Crop Sci 176:223–234

    Article  Google Scholar 

  • Mäkelä P, Munns R, Colmer TD, Condon AG, Peltonen-Sainio P (1998) Effects of foliar applications of glycinebetaine on stomatal conductance, abscisic acid and solute concentrations in leaves of salt- or drought-stressed tomato. Aust J Plant Physiol 25:655–663

    Google Scholar 

  • Mäkelä P, Konttur M, Pehu E, Somersalo S (1999) Photosyntehtic response of drought- and salt-stressed tomato and turnip rape plants to foliar-applied glycinebetaine. Physiol Plant 105:45–50

    Article  Google Scholar 

  • Mäkelä P, Kärkkäinen J, Somersalo S (2000) Effect of glycinebetaine on chloroplast infrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. Biol Plant 43:471–475

    Article  Google Scholar 

  • Masood A, Iqbal N, Khan NA (2012) Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant Cell Environ 35:524–533

    Article  CAS  PubMed  Google Scholar 

  • Masood A, Per TS, Asgher M, Fatma M, Khan MIR, Rasheed F, Hussain SJ, Khan NA (2016) Glycine betaine: role in shifting plants toward adaptation under extreme environments. In: Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, New Delhi, pp 69–82

    Chapter  Google Scholar 

  • Molla MR, Ali MR, Hasanuzzaman M, Almamun MH, Ahmed A, Nazimuddowla MAN, Rohman MM (2014) Exogenous proline and betaine-induced upregulation of glutathione transferase and glyoxalase I in lentil (Lens culinaris) under drought stress. Not Bot Horti Agrobo 42:73–80

    Article  CAS  Google Scholar 

  • Nawaz K, Ashraf M (2010) Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress. J Agron Crop Sci 196:28–37

    Article  CAS  Google Scholar 

  • Nishiyama Y, Murata N (2014) Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biot 98:8777–8796

    Article  CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749

    Article  CAS  PubMed  Google Scholar 

  • Oukarroum A, El Madidi S, Strasser RJ (2012) Exogenous glycine betaine and proline play a protective role in heat-stressed barley leaves (Hordeum vulgare L.): a chlorophyll a fluorescence study. Plant Biosyst 146:1037–1043

    Article  Google Scholar 

  • Park EJ, Jeknic Z, Chen THH (2006) Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant Cell Physiol 47:706–714

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal S, Carpentier R (2003) Retardation of photo-induced changes in photosystem I submembrane particles by glycinebetaine and sucrose. Photosynth Res 78:77–85

    Article  CAS  PubMed  Google Scholar 

  • Raza SH, Athar H, Ashraf M (2006) Influence of exogenously applied glycinebetaine on the photosynthetic capacity of two differently adapted wheat cultivars under salt stress. Pak J Bot 38:341–351

    Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Sorwong A, Sakhonwasee S (2015) Foliar application of glycinebetaine mitigates the effect of heat stress in three marigold (Tagetes erecta) cultivars. Hort J 84:161–171

    Article  CAS  Google Scholar 

  • Stepien P, Gediga K, Piszcz U, Karmowska K (2016) Effects of the exogenous glycinebetaine on photosynthetic apparatus in cucumber leaves challenging Al stress. In Proceedings of the 18th International Conference on Heavy Metals in the Environment

    Google Scholar 

  • Takabe T, Rai V, Hibino T (2006) Metabolic engineering of glycinebetaine. In: Rai A, Takabe T (eds) Abiotic stress tolerance in plants: toward the improvement of global environment and food. Springer, Dordrecht, pp 137–151

    Chapter  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Gill SS, Tuteja R (2011) Plant responses to abiotic stresses: shedding light on salt drought cold heavy metal stress. In: Tuteja N, Gill SS, Tuteja R (eds) Omics and plant abiotic stress tolerance. Bentham Science Publishers Ltd., Beijing, pp 39–64

    Google Scholar 

  • Wang C, Ma XL, Hui Z, Wang W (2008) Glycine betaine improves thylakoid membrane function of tobacco leaves under low-temperature stress. Photosynthetica 46:400–409

    Article  CAS  Google Scholar 

  • Xing W, Rajashekar CB (1999) Alleviation of water stress in beans by exogenous glycine betaine. Plant Sci 148:185–195

    Article  CAS  Google Scholar 

  • Yang XH, Lu CM (2005) Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiol Plant 124:343–352

    Article  CAS  Google Scholar 

  • Yang XH, Lu CM (2006) Effects of exogenous glycinebetaine on growth, CO2 assimilation, and photosystem II photochemistry of maize plants. Physiol Plant 127:593–602

    Article  CAS  Google Scholar 

  • Yang Z, Yu J, Merewitz E, Huang B (2012) Differential effects of abscisic acid and glycine betaine on physiological responses to drought and salinity stress for two perennial grass species. J Am Soc Hortic Sci 137:96–106

    Article  CAS  Google Scholar 

  • Yildirim E, Ekinci M, Turan M, Dursun A, Kul R, Parlakova F (2015) Roles of glycinebetaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.). Arch Agron Soil Sci 61:1673–1689

    Article  CAS  Google Scholar 

  • Zhang LX, Lai JH, Gao M, Ashraf M (2014) Exogenous glycinebetaine and humic acid improve growth, nitrogen status, photosynthesis, and antioxidant defense system and confer tolerance to nitrogen stress in maize seedlings. J Plant Interact 9:159–166

    Article  CAS  Google Scholar 

  • Zhao XX, Ma QQ, Liang C, Fang Y, Wang YQ, Wang W (2007) Effect of glycinebetaine on function of thylakoid membranes in wheat flag leaves under drought stress. Biol Plant 51:584–588

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31470341, 31870216) and the State Key Basic Research and Development Plan of China (2015CB150105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, T., Yang, X. (2019). Exogenous Glycinebetaine-Mediated Modulation of Abiotic Stress Tolerance in Plants: Possible Mechanisms. In: Hossain, M., Kumar, V., Burritt, D., Fujita, M., Mäkelä, P. (eds) Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-27423-8_6

Download citation

Publish with us

Policies and ethics