Skip to main content

Some New Methods for Generating Convex Functions

  • Chapter
  • First Online:
Differential and Integral Inequalities

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 151))

  • 1258 Accesses

Abstract

We present some new methods for constructing convex functions. One of the methods is based on the composition of a convex function of several variables which is separately monotone with convex and concave functions. Using several well-known results on the composition of convex and quasi-convex functions we build new convex, quasi-convex, concave, and quasi-concave functions. The third section is dedicated to the study of convexity property of symmetric Archimedean functions. In the fourth section the asymmetric Archimedean function is considered. A classical example of such a function is the Bellman function. The fifth section is dedicated to the study of convexity/concavity of symmetric polynomials. In the sixth section a new proof of Chandler–Davis theorem is given. Starting from symmetric convex functions defined on finite dimensional spaces we build several convex functions of hermitian matrices. The seventh section is dedicated to a generalization of Muirhead’s theorem and to some applications of it. The last section is dedicated to the construction of convex functions based on Taylor remainder series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Aguiar, C. Andre, C. Benedetti, N. Bergeron, Z. Chen, P. Diaconis, A. Hendrickson, S. Hsiao, I.M. Isaacs, A. Jedwab, et al., Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras. Adv. Math. 229(4), 2310–2337 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. E.E. Allen, The descent monomials and a basis for the diagonally symmetric polynomials. J. Algebra Combin. 3, 5–16 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Andrica, M.O. Drimbe, On some inequalities involving isotonic functionals. Math. Anal. Numer. Theorie Approx. 17(1), 1–7 (1988)

    MathSciNet  MATH  Google Scholar 

  4. M. Becheanu, International Mathematical Olympiads 1959–2000, Problems, Solutions, Results (Academic Distribution Center, Freeland, 2001)

    Google Scholar 

  5. R. Bellman, On an inequality concerning an indefinite form. Am. Math. Mon. 63, 108–109 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Bergstrom, A triangle inequality for matrices, in Den Ilte Skandinauiske Matematikerkongress (1949), pp. 264–267

    Google Scholar 

  7. C. Bertone, The Euler characteristic as a polynomial in the Chern classes. Int. J. Algebra 2, 757–769 (2008)

    MathSciNet  MATH  Google Scholar 

  8. E.C. Boadi, Symmetric Polynomials, Combinatorics and Mathematical, Master Thesis, University of Ottawa, Canada, 2016. www.Physicsmysite.science.uottawa.ca/hsalmasi/report/thesis-evans.pdf

  9. J.M. Borwein, A.S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples (Springer, Berlin, 2010)

    Google Scholar 

  10. J.M. Borwein, J.D. Vanderwerff, Convex Functions: Constructions, Characterizations and Counterexamples (Cambridge University Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  11. W.Y.C. Chen, C. Krattenthaler, A.L.B. Yang, The flagged Cauchy determinant. Graphs Combin. 21, 51–62 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. K.M. Chong, Spectral order preserving matrices and Muirhead’s theorem. Trans. Am. Math. Soc. 200, 437–444 (1974)

    MathSciNet  MATH  Google Scholar 

  13. A. Curnier, Q.C. He, P. Zysset, Conewise linear elastic materials. J. Elasticity 37, 1–38 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Z. Cvetkovski, Inequalities.Theorems, Techniques and Selected Problems (Springer, Berlin, 2012)

    Book  MATH  Google Scholar 

  15. C. Davis, All convex invariant functions of Hermitian matrices. Arch. Math. 8(4), 276–278 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  16. D.E. Daykin, Generalisation of the Muirhead-Rado inequality. Proc. Am. Math. Soc. 30(1), 84–86 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Djukić, V. Janković, I. Matić, N. Petrović, The IMO Compendium: A Collection of Problems Suggested for the International Mathematical Olympiads: 1959–2004 (Springer, Berlin, 2006)

    MATH  Google Scholar 

  18. M.E.A. El-Mikkawy, On a connection between the Pascal, Vandermonde and Stirling matrices-I. Appl. Math. Comput. 145, 23–32 (2003)

    MathSciNet  MATH  Google Scholar 

  19. M.E.A. El-Mikkawy, On a connection between the Pascal, Vandermonde and Stirling matrices-II. Appl. Math. Comput. 146, 759–769 (2003)

    MATH  Google Scholar 

  20. M.E.A. El-Mikkawy, Explicit inverse of a generalized Vandermonde matrix. Appl. Math. Comput. 146, 643–651 (2003)

    MathSciNet  MATH  Google Scholar 

  21. M.E.A. El-Mikkawy, T. Sogabe, Notes on particular symmetric polynomials with applications. Appl. Math. Comput. 215, 3311–3317 (2010)

    MathSciNet  MATH  Google Scholar 

  22. R. Fletcher, A new variational result for quasi-Newton formulae. SIAM J. Optim. 1, 18–21 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Gao, P. Neff, I. Roventa, C. Thiel, On the convexity of nonlinear elastic energies in the right Cauchy-Green tensor. J. Elast. 127, 303–308 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. D.J.H. Garling, Inequalities: A Journey into Linear Analysis (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  25. I.M. Gessel, Symmetric functions and P-recursiveness. J. Combin.Theory Ser. A 53, 257–285 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. V. Gorin, G. Panova, Asymptotics of symmetric polynomials with applications to statistical mechanics and representation theory. Ann. Probab. 43(6), 3052–3132 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, 2nd edn. (Cambridge University Press, Cambridge, 1952)

    MATH  Google Scholar 

  28. S. Helgason, Differential Geometry and Symmetric Spaces, vol. 341 (American Mathematical Society, Providence, 2001)

    MATH  Google Scholar 

  29. T. Hoang, A. Seeger, On conjugate functions, subgradients, and directional derivatives of a class of optimality criteria in experimental design. Statistics 22, 349–368 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. R.A. Horn, C.R. Johnson, Topics in Matrix Analysis (Cambridge University Press, Cambridge, 1994)

    MATH  Google Scholar 

  31. D.L. Hydorn, R.J. Muirhead, Polynomial estimation of eigenvalues. Commun. Stat. Theory Meth. 28 , 581–596 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. R. Jozsa, G. Mitchison, Symmetric polynomials in information theory: entropy and subentropy. J. Math. Phys. 56(6), 062201 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. E.C. Kemble, The Fundamental Principles of Quantum Mechanics (Dover, New York, 1958)

    MATH  Google Scholar 

  34. B. Kimelfeld, A generalization of Muirhead’s theorem. Linear Algebra Appl. 216, 205–209 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. E.P. Klement, R. Mesiar, E. Pap, Generated triangular norms. Kybernetika, 36(3), 363–377 (2000)

    MathSciNet  MATH  Google Scholar 

  36. X. Lachaume, On the concavity of a sum of elementary symmetric polynomials. ArXiv e-prints, arXiv:1712.10327 (2017)

    Google Scholar 

  37. S. Lehmich, P. Neff, J. Lankeit, On the convexity of the function C f(det C) on positive-definite matrices. Math. Mech. Solids 19(4), 369–375 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. A.S. Lewis, Convex analysis on the Hermitian matrices. SIAM J. Optim. 6, 164–177 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. A.S. Lewis, Derivatives of spectral functions. Math. Oper. Res. 6, 576–588 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. A.S. Lewis, The mathematics of eigenvalue optimization. Math. Programm. 97(1–2), 155–176 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. A.S. Lewis, M.L. Overton, Eigenvalue optimization. Acta Numer. 5 , 149–190 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. A.S. Lewis, H. Sendov, Twice differentiable spectral functions. SIAM J. Matrix Anal. Appl. 23(2), 368–386 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. L. Losonczi, Z. Pales, Inequalities for indefinite forms. J. Math. Anal. Appl. 205, 148–156 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. S.V. Lyudkovskii, Compact relationships between invariants of classical Lie groups and elementary symmetric polynomials. Theory Math. Phys. 89, 1281–1286 (1991)

    Article  MathSciNet  Google Scholar 

  45. I.G. Macdonald, Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs, 2nd edn. (The Clarendon Press, Oxford University Press, New York, 1995)

    Google Scholar 

  46. P. Major, The limit behavior of elementary symmetric polynomials of I.I.D. random variables when their order tends to infinity. Ann. Probab. 27, 1980–2010 (1999)

    MathSciNet  MATH  Google Scholar 

  47. R.B. Manfrino, J.A.G. Ortega, R.V. Delgado, Inequalities: A Mathematical Olympiad Approach (Springer, Berlin, 2010)

    MATH  Google Scholar 

  48. M. Marcus, L. Lopes, Symmetric functions and Hermitian matrices. Can. J. Math. 9, 305–312 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  49. A.W. Marshal, I. Olkin, B.C. Arnold, Inequalities : Theory of Majorization and Its Applications 2nd edn. (Springer, Berlin, 2011)

    Book  Google Scholar 

  50. A.W. Marshall, F. Proschan, An inequality for convex functions involving majorization. J. Math. Anal. Appl. 12, 87–90 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  51. C.D. Meyer, Matrix analysis and Applied Linear Algebra (SIAM, Philadelphia, 2000)

    Book  Google Scholar 

  52. D.S. Mitrinović, J. Pečarić, Unified treatment of some inequalities for mixed means. sterreich. Akad. Wiss. Math. Nat. Kl. Sitzungsber. II, 197(8–10), 391–397 (1988)

    Google Scholar 

  53. D.S. Mitrinović, J. Pečarić, A.M. Fink, Classical and New Inequalities in Analysis (Kluwer, Dordrecht, 1993)

    Book  MATH  Google Scholar 

  54. V.V. Monov, A family of symmetric polynomials of the eigenvalues of a matrix. Linear Algebra Appl. 429, 2199–2208 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. W.W. Muir, Inequalities concerning the inverses of positive definite matrices. Proc. Edinb. Math. Soc 19,109–113 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  56. R.F. Muirhead, Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters. Proc. Edinb. Math. Soc. 21, 144–157 (1903)

    Article  MATH  Google Scholar 

  57. Y.E. Nesterov, A.S. Nemirovskii, Optimization over positive semidefinite matrices: Mathematical Background and User’s Manual (USSR Academy Science Center Economics and Mathematical Institute, Moscow, 1990)

    Google Scholar 

  58. C.P. Niculescu, L.-E. Persson, Convex Functions and Their Applications: A Contemporary Approach (Springer, Berlin, 2018)

    Book  MATH  Google Scholar 

  59. A. Pazman, Foundations of optimum experimental design, in Mathematics and its Applications. East European Series (D. Reidel, Boston, 1986)

    Google Scholar 

  60. J.E. Pečarić, Remark on an inequality of S. Gabler. J. Math. Anal. Appl. 184(1), 19–21 (1994)

    Article  MATH  Google Scholar 

  61. J.E. Pečarić, F. Proschan, Y.L. Tong, Convex Functions, Partial Orderings, and Statistical Applications. Mathematics in Science and Engineering, vol. 187 (Academic Press, London, 1992)

    Google Scholar 

  62. J.E. Pečarić, V. Volenec, Interpolation of the Jensen inequality with some applications. Sitzungsber. Oesterr. Akad. Wiss. Abt. II 197, 463–467 (1988)

    MathSciNet  MATH  Google Scholar 

  63. F. Proschan, J. Sethuraman, Two generalizations of Muirhead’s theorem. Bull. Calcutta Math. Soc. 69, 341–344 (1977)

    MathSciNet  MATH  Google Scholar 

  64. T. Puong, Diamonds in Mathematical Inequalities (Hanoi Publishing House, 2007)

    Google Scholar 

  65. A.W. Roberts, D.E. Varberg, Convex Functions (Academic Press, London, 1973)

    MATH  Google Scholar 

  66. J.V. Ryff, On Muirhead’s theorem. Pacific J. Math. 21(3), 567–576 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  67. L.I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1955)

    MATH  Google Scholar 

  68. H.J. Schmidt, J. Schnack, Partition functions and symmetric polynomials. Am. J. Phys. 70, 53–57 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  69. H.J. Schmidt, J. Schnack, Symmetric polynomials in physics, in ed. by J.-P. Gazeau et al., GROUP 24, Physical and Mathematical Aspects of Symmetries (Institute of Physics Publishing, Bristol and Philadelphia, 2002), pp. 147–153

    Google Scholar 

  70. L.J. Schulman, Muirhead-Rado inequality for compact groups. Positivity 13, 559–574 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  71. I. Schur, Uber eine Klasse von Mittelbildungen mit Anwendungdie Determinanten. Theorie Sitzungsber. Berlin. Math. Gesellschaft 22, 9–29 (1923)

    Google Scholar 

  72. A. Seeger, Convex analysis of spectrally defined matrix functions. SIAM J. Optim. 7, 679–696 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  73. M. Silhavy, The convexity of C →h(C). Tech. Mech. 35(1), 60–61 (2015)

    Google Scholar 

  74. T. Sogabe, M.E.A. El-Mikkawy, On a problem related to the Vandermonde determinant. Disc. Appl. Math. 157, 2997–2999 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  75. S.J. Spector, A note on the convexity of C →h(C). J. Elast. 118(2), 251–256 (2015)

    Article  MATH  Google Scholar 

  76. S. Sra, New concavity and convexity results for symmetric polynomials and their ratios. Linear Multilinear Algebra 1–9 (2018). http://dx.doi.org/10.1080/03081087.2018.1527891

  77. R. Stanley, Some combinatorial properties of Jack symmetric functions. Adv. Math. 77, 76–115 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  78. L. Tibiletti, Quasi-concavity property of multivariate distribution functions. Ratio Math. 9, 27–36 (1995)

    Google Scholar 

  79. J. Tkadlec, Triangular norms with continuous diagonals. Tatra Mt. Math. Publ. 16, 187–195 (1999)

    MathSciNet  MATH  Google Scholar 

  80. M. Torki, First- and second-order epi-differentiability in eigenvalue optimization. J. Math. Anal. Appl. 234, 391–416 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  81. N.K. Tsing, M.K.H. Fan, E.I. Verriest, On analyticity of functions involving eigenvalues. Linear Algebra Appl. 207, 159–180 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  82. L. Vandenberghe, S. Boyd, S.P. Wu, Determinant maximization with linear matrix inequality constraints. SIAM J. Matrix Anal. Appl. 19(2), 499–533 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  83. H. Wolkowicz, Measures for symmetric rank-one updates. Math. Oper. Res. 19, 815–830 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  84. B.J. Venkatachala, Inequalities. An Approach Through Problems (Springer, Berlin, 2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorin Andrica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andrica, D., Rădulescu, S., Rădulescu, M. (2019). Some New Methods for Generating Convex Functions. In: Andrica, D., Rassias, T. (eds) Differential and Integral Inequalities. Springer Optimization and Its Applications, vol 151. Springer, Cham. https://doi.org/10.1007/978-3-030-27407-8_4

Download citation

Publish with us

Policies and ethics