Skip to main content

The Plumage of Basal Birds

  • Chapter
  • First Online:
Book cover The Evolution of Feathers

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Early bird plumage is well known primarily due to numerous discoveries of specimens preserving feathers from Early Cretaceous deposits in China. Remiges and rectrices are most commonly preserved with rectrices showing the greatest variation. The long boney-tailed Jeholornis has a unique tail plumage employing two anatomically distinct rectricial pterylae serving both aerodynamic and ornamental functions. Basal pygostylians show disparate tail plumages that are reflected by differences in pygostyle morphology. Sapeornis has a proportionately shorter pygostyle wielding a fan-shaped array of rectrices, whereas the robust pygostyle of Confuciusornis is associated with a pair of elongate rachis-dominated feathers in some specimens, considered indicative of sexual dimorphism. The latter morphology is also present in many enantiornithines. Members of this diverse clade have primarily ornamental tail morphologies, whereas the earliest members of the Ornithuromorpha all possess tail morphologies that appear to be primarily aerodynamic. Body feathers in Archaeopteryx and adult enantiornithines trapped in amber are pennaceous suggesting that reported rachis-less body feathers in Jehol birds may be taphonomic artifacts. Rarely preserved, well-developed pennaceous crural feathers are present in Archaeopteryx and some enantiornithines, whereas crural feathers are short in the Confuciusornithiformes. Their preserved absence in nearly all Jehol ornithuromorph specimens most-likely reflects the smaller available sample size. Crural feathers in many basal ornithuromorphs were probably reduced, as in Yanornis and extant aquatic and semiaquatic birds. Overall, early birds show a trend towards the reduction of the distal hindlimb feathers present in closely related nonavian dinosaurs. However, well-developed tarsometatarsal feathers are present in Sapeornis and two exceptionally well-preserved enantiornithine specimens indicate this group was diverse in the distal extent of their hindlimb plumage, including at least one lineage with feathered pedal digits. Although remarkably modern in many aspects, early bird plumage still differed from that of their modern counterparts including extinct morphotypes and differences in ontogenetic patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amiot R, Wang X, Zhou Z-H, Wang X-L, Buffetaut E, Lecuyer C, Ding Z-L, Fluteau F, Hibino T, Kusuhashi N, Mo J-Y, Suteethorn V, Wang Y-Q, Xu X, Zhang F-S (2011) Oxygen isotopes of East Asian dinosaurs reveal exceptionally cold Early Cretaceous climates. Proc Natl Acad Sci USA 108:5179–5183

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailleul AM, O’Connor J, Zhang S-K, Li Z-H, Wang Q, Lamanna M, Zhu X-F, Zhou Z-H (2019) An Early Cretaceous enantiornithine (Aves) preserving an unlaid egg and probable medullary bone. Nat Commun 10(1275):1–10

    CAS  Google Scholar 

  • Barden HE, Wogelius RA, Li D-Q, Manning PL, Edwards NP, van Dongen BE (2011) Morphological and geochemical evidence of eumelanin preservation in the feathers of the Early Cretaceous bird, Gansus yumenensis. PLoS One 6:e25494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beebe CW (1915) A tetrapteryx stage in the ancestry of birds. Zoologica 2:38–52

    Google Scholar 

  • Carney RM, Vinther J, Shawkey MD, D’Alba L, Ackermann J (2012) New evidence on the colour and nature of the isolated Archaeopteryx feather. Nat Commun 3:1–8

    Article  CAS  Google Scholar 

  • Carroll NR, Chiappe LM, Bottjer DJ (2019) Mid-cretaceous amber inclusions reveal morphogenesis of extinct rachis-dominated feathers. Sci Rep 9(18108):1–8

    Google Scholar 

  • Cau A, Arduini P (2008) Enantiophoenix electrophyla gen. et sp. nov. (Aves, Enantiornithes) from the Upper Cretaceous (Cenomanian) of Lebanon and its phylogenetic relationships. Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 149:293–324

    Google Scholar 

  • Chen P-J, Dong Z, Zhen S (1998) An exceptionally well-preserved theropod dinosaur from the Yixian Formation of China. Nature 391:147–152

    Article  CAS  Google Scholar 

  • Chiappe LM, Lacasa-Ruiz A (2002) Noguerornis gonzalezi (Aves: Ornithothoraces) from the Early Cretaceous of Spain. In: Chiappe LM, Witmer LM (eds) Mesozoic birds: above the heads of dinosaurs. University of California Press, Berkeley, CA, pp 230–239

    Google Scholar 

  • Chiappe LM, Meng Q-J (2016) Birds of stone. JHU Press, Pittsburgh

    Google Scholar 

  • Chiappe LM, Ji S, Ji Q, Norell MA (1999) Anatomy and systematics of the Confuciusornithidae (Theropoda: Aves) from the Late Mesozoic of northeastern China. Bull Am Mus Nat Hist 242:1–89

    Google Scholar 

  • Chiappe LM, Zhao B, O’Connor JK, Gao C-H, Wang X-R, Habib M, Marugan-Lobon J, Meng Q-J, Cheng X-D (2014) A new specimen of the early cretaceous bird Hongshanornis longicresta: insights into the aerodynamics and diet of a basal ornithuromorph. PeerJ 2:1–28

    Article  Google Scholar 

  • Chinsamy A, Chiappe LM, Dodson P (1995) Mesozoic avian bone microstructure: physiological implications. Paleobiology 21:561–574

    Article  Google Scholar 

  • Chinsamy A, Chiappe LM, Marugán-Lobón J, Gao C-H, Zhang F-J (2013) Gender identification of the Mesozoic bird Confuciusornis sanctus. Nat Commun 4:1–5

    Article  CAS  Google Scholar 

  • Clarke JA, Zhou Z, Zhang F (2006) Insight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology of Yixianornis grabaui. J Anat 208:287–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalla Vecchia FM, Chiappe LM (2002) First avian skeleton from the Mesozoic of northern Gondwana. J Vertebr Paleontol 22:856–860

    Article  Google Scholar 

  • Dalsätt J, Ericson PGP, Zhou Z-H (2014) A new Enantiornithes (Aves) from the Early Cretaceous of China. Acta Geol Sin 88:1034–1040

    Article  Google Scholar 

  • Dames W (1884) Über Archaeopteryx. Palaeontologische Abhandlungen 3:119–196

    Google Scholar 

  • de Souza Carvalho I, Novas FE, Agnolin FL, Isasi MP, Freitas FI, Andrade JA (2015) A Mesozoic bird from Gondwana preserving feathers. Nat Commun 6:1–5

    Article  CAS  Google Scholar 

  • Dyke GD, Nudds RL (2008) The fossil record and limb disparity of enantiornithines, the dominant flying birds of the Cretaceous. Lethaia 42:248–254

    Article  Google Scholar 

  • Elzanowski A (2002) Archaeopterygidae (Upper Jurassic of Germany). In: Chiappe LM, Witmer LM (eds) Mesozoic birds: above the heads of dinosaurs. University of California Press, Berkeley, CA, pp 129–159

    Google Scholar 

  • Falk AR, Kaye TG, Zhou Z-H, Burnham DA (2016) Laser fluorescence illuminates the soft tissue and life habits of the Early Cretaceous bird Confuciusornis. PLoS One 11:e0167284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falk AR, O’Connor J, Wang M, Zhou Z-H (2019) On the preservation of the beak in Confuciusornis (Aves: Pygostylia). Diversity 11(212):1–8

    Google Scholar 

  • Feo TJ, Field DJ, Prum RO (2015) Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight. Proc R Soc B Biol Sci 282:20142864

    Google Scholar 

  • Fitzpatrick S (1999) Tail length in birds in relation to tail shape, general flight ecology and sexual selection. J Evol Biol 12:49–60

    Article  Google Scholar 

  • Foth C (2011) The morphology of neoptile feathers: ancestral state reconstruction and its phylogenetic implications. J Morphol 272:387–403

    Article  PubMed  Google Scholar 

  • Foth C (2012) On the identification of feather structures in stem-line representatives of birds: evidence from fossils and actuopalaeontology. Paläontol Z 86:91–102

    Article  Google Scholar 

  • Foth C, Tischlinger H, Rauhut OWM (2014) New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers. Nature 511:79–82

    Article  CAS  PubMed  Google Scholar 

  • Gao C-H, Chiappe LM, Zhang F-J, Pomeroy DL, Shen C-Z, Chinsamy A, Walsh MO (2012) A subadult specimen of the Early Cretaceous bird Sapeornis chaoyangensis and a taxonomic reassessment of sapeornithids. J Vertebr Paleontol 32:1103–1112

    Article  CAS  Google Scholar 

  • Gill FB (2007) Ornithology, 3rd edn. W.H. Freeman and Company, New York, p 758

    Google Scholar 

  • Gluckman T-L (2014) Pathways to elaboration of sexual dimorphism in bird plumage patterns. Biol J Linn Soc 111:262–273

    Article  Google Scholar 

  • Hou L, Zhou Z-H, Martin LD, Feduccia A (1995) A beaked bird from the Jurassic of China. Nature 377:616–618

    Article  Google Scholar 

  • Hou L, Martin LD, Zhou Z, Feduccia A (1996) Early adaptive radiation of birds: evidence from fossils from northeastern China. Science 274:1164–1167

    Article  CAS  PubMed  Google Scholar 

  • Hou L, Martin LD, Zhonghe Z, Feduccia A, Zhang F (1999) A diapsid skull in a new species of the primitive bird Confuciusornis. Nature 399:679–682

    Article  CAS  Google Scholar 

  • Hou L, Chiappe LM, Zhang F, Chuong C-M (2004) New Early Cretaceous fossil from China documents a novel trophic specialization for Mesozoic birds. Naturwissenschaften 91:22–25

    Article  CAS  PubMed  Google Scholar 

  • Hu H, O’Connor JK, Zhou Z-H (2015) A new species of Pengornithidae (Aves: Enantiornithes) from the Lower Cretaceous of China suggests a specialized scansorial habitat previously unknown in early birds. PLoS One 10:e0126791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J-D, Wang X, Hu Y-C, Liu J, Peteya JA, Clarke JA (2016) A new ornithurine from the Early Cretaceous of China sheds light on the evolution of early ecological and cranial diversity in birds. PeerJ 4:e1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Q, Currie PJ, Norell MA, Ji S-A (1998) Two feathered dinosaurs from northeastern China. Nature 393:753–761

    Article  CAS  Google Scholar 

  • Kelso L, Kelso EH (1936) The relation of feathering of feet of American owls to humidity of environment and to life zones. Auk 53:51–56

    Article  Google Scholar 

  • Kundrát M (2004) When did theropods become feathered? Evidence for pre-Archaeopteryx feathery appendages. J Exp Zool 302B:1–10

    Article  Google Scholar 

  • Kurochkin EN (1985) A true carinate bird from Lower Cretaceous deposits in Mongolia and other evidence of Early Cretaceous birds in Asia. Cretac Res 6:271–278

    Article  Google Scholar 

  • Lacasa-Ruiz A (1988) An Early Cretaceous fossil bird from Montsec Mountain (Lleida, Spain). Terra Nova:45–46

    Google Scholar 

  • Li L, Duan Y, Hu D, Wang L, Cheng S, Hou L (2006) New eoentantiornithid bird from the Early Cretaceous Jiufotang Formation of western Liaoning, China. Acta Geologica Sinica (English Edition) 80:38–41

    Article  Google Scholar 

  • Li Q-G, Gao K-Q, Meng Q-J, Clarke JA, Shawkey MD, D’Alba L, Pei R, Ellison M, Norell MA, Vinther J (2012) Reconstruction of Microraptor and the evolution of iridescent plumage. Science 335:1215–1219

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Chiappe LM, Serrano FJ, Habib M, Zhang Y-G, Meng Q-J (2017) Flight aerodynamics in enantiornithines: information from a new Chinese Early Cretaceous bird. PLoS One 12:e0184637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Chiappe LM, Zhang Y-G, Serrano FJ, Meng Q-J (2019) Soft tissue preservation in two new enantiornithine specimens (Aves) from the Lower Cretaceous Huajiying Formation of Hebei Province, China. Cretac Res 95:191–207

    Article  Google Scholar 

  • Lovette IJ, Fitzpatrick JW (2004) The handbook of bird biology. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Martin LD (1984) A new hesperornithid and the relationships of the Mesozoic birds. Trans Kans Acad Sci 87:141–150

    Article  Google Scholar 

  • Mayr G, Pohl B, Peters DS (2005) A well-preserved Archaeopteryx specimen with theropod features. Science 310:1483–1486

    Article  CAS  PubMed  Google Scholar 

  • Møller AP, Hedenström A (1999) Comparative evidence for costs of secondary sexual characters: adaptive vane emargination of ornamented feathers in birds. J Evol Biol 12:296–305

    Article  Google Scholar 

  • Navalón G, Marugán-Lobón J, Chiappe LM, Sanz JL, Buscalioni AD (2015) Soft-tissue and dermal arrangement in the wing of an Early Cretaceous bird: implications for the evolution of avian flight. Sci Rep 5:14864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navalón G, Meng Q-J, Marugán-Lobón J, Zhang Y-G, Wang B-P, Xing H, Liu D, Chiappe LM (2018) Diversity and evolution of the Confuciusornithidae: evidence from a new 131-million-year-old specimen from the Huajiying Formation in NE China. J Asian Earth Sci 152:12–22

    Article  Google Scholar 

  • Nudds RL, Dyke GD (2010) Narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability. Science 328:887–889

    Article  CAS  PubMed  Google Scholar 

  • O’Connor JK (2009) A systematic review of Enantiornithes (Aves: Ornithothoraces). In: Geological sciences. Dissertation, University of Southern California, Los Angeles, pp 600

    Google Scholar 

  • O’Connor JK, Chang H-L (2015) Hindlimb feathers in paravians: primarily ‘wings’ or ornaments? Biol Bull 42:1–6

    Article  Google Scholar 

  • O’Connor JK, Sullivan C (2014) Reinterpretation of the Early Cretaceous maniraptoran (Dinosauria: Theropoda) Zhongornis haoae as a scansoriopterygid-like non-avian, and morphological resemblances between scansoriopterygids and basal oviraptorosaurs. Vertebrata Palasiatica 52:3–30

    Google Scholar 

  • O’Connor JK, Wang X-R, Chiappe LM, Gao C-H, Meng Q-J, Cheng X-D, Liu J-Y (2009) Phylogenetic support for a specialized clade of Cretaceous enantiornithine birds with information from a new species. J Vertebr Paleontol 29:188–204

    Article  Google Scholar 

  • O’Connor JK, Chiappe LM, Bell A (2011) Pre-modern birds: avian divergences in the Mesozoic. In: Dyke GD, Kaiser G (eds) Living dinosaurs: the evolutionary history of birds. Wiley, Hoboken, NJ, pp 39–114

    Chapter  Google Scholar 

  • O’Connor JK, Chiappe LM, Chuong C-M, Bottjer DJ, You H-L (2012a) Homology and potential cellular and molecular mechanisms for the development of unique feather morphologies in early birds. Geosciences 2:157–177

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Connor JK, Sun C-K, Xu X, Wang X-L, Zhou Z-H (2012b) A new species of Jeholornis with complete caudal integument. Hist Biol 24:29–41

    Article  Google Scholar 

  • O’Connor JK, Wang X-L, Sullivan C, Zheng X-T, Tubaro PL, Zhang X-M, Zhou Z-H (2013) The unique caudal plumage of Jeholornis and complex tail evolution in early birds. Proc Natl Acad Sci USA 110:17404–17408

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Connor JK, Li D-Q, Lamanna M, Wang M, Harris JD, Atterholt JA, You H-L (2016a) A new Early Cretaceous enantiornithine (Aves: Ornithothoraces) from northwestern China with elaborate tail ornamentation. J Vertebr Paleontol 36:e1054035

    Article  Google Scholar 

  • O’Connor JK, Wang X-L, Zheng X-T, Hu H, Zhang X-M, Zhou Z-H (2016b) An enantiornithine with a fan-shaped tail, and the evolution of the rectricial complex in early birds. Curr Biol 26:114–119

    Article  CAS  PubMed  Google Scholar 

  • O’Connor J, Erickson GM, Norell MA, Bailleul AM, Hu H, Zhou Z-H (2018) Medullary bone in an Early Cretaceous enantiornithine (Aves) and discussion regarding its identification in fossils. Nat Commun 9:1–8

    Google Scholar 

  • O’Connor J, Falk AR, Wang M, Zheng X-T (2020) First report of immature feathers in juvenile enantiornithines from the Early Cretaceous Jehol avifauna. Vert PalAs

    Google Scholar 

  • Owen R (1863) On the Archaeopteryx of von Meyer, with a description of the fossil remains of a long-tailed species, from the lithographic stone of Solenhofen. Philos Trans R Soc Lond 153:33–47

    Google Scholar 

  • Pan Y-H, Sha J-G, Zhou Z-H, Fürsich FT (2013) The Jehol Biota: definition and distribution of exceptionally preserved relicts of a continental Early Cretaceous ecosystem. Cretac Res 44:30–38

    Article  Google Scholar 

  • Pei R, Li Q-G, Meng Q-J, Gao K-Q, Norell MA (2014) A new specimen of Microraptor (Theropoda: Dromaeosauridae) from the Lower Cretaceous of western Liaoning, China. Am Mus Novit 3821:1–28

    Article  Google Scholar 

  • Pennycuick CJ (1968) A wind-tunnel study of gliding flight in the pigeon Columba livia. J Exp Biol 49:509–526

    Google Scholar 

  • Pennycuick CJ (1971) Control of gliding angle in Rüppell’s Griffon Vulture Gyps rüppellii. J Exp Biol 55:39–46

    Google Scholar 

  • Peteya JA, Clarke JA, Li Q-G, Gao K-Q, Shawkey MD (2017) The plumage and colouration of an enantiornithine bird from the Early Cretaceous of China. Palaeontology 60:55–71

    Article  Google Scholar 

  • Prum RO, Brush AH (2002) The evolutionary origin and diversification of feathers. Q Rev Biol 77:261–295

    Article  PubMed  Google Scholar 

  • Saitta ET, Clapham C, Vinther J (2018) Experimental subaqueous burial of a bird carcass and compaction of plumage. PalZ:1–6

    Google Scholar 

  • Sanz JL, Chiappe LM, Pérez-Moreno BP, Buscalioni AD, Moratalla JJ, Ortega F, Poyato-Ariza FJ (1996) An Early Cretaceous bird from Spain and its implications for the evolution of avian flight. Nature 382:442–445

    Article  CAS  Google Scholar 

  • Sanz JL, Chiappe LM, Fernández-Jalvo Y, Ortega F, Sánchez-Chillon B, Poyato-Ariza FJ, Pérez-Moreno BP (2001) An Early Cretaceous pellet. Nature 409:998–999

    Article  CAS  PubMed  Google Scholar 

  • Serrano FJ, Chiappe LM (2017) Aerodynamic modelling of a Cretaceous bird reveals thermal soaring capabilities during early avian evolution. J R Soc Interface 14:20170182

    Article  PubMed  PubMed Central  Google Scholar 

  • Starck JM, Ricklefs RE (1998) Patterns of development: the altricial-precocial spectrum. In: Starck JM, Ricklefs RE (eds) Avian growth and development. Oxford University Press, New York City, pp 3–30

    Google Scholar 

  • Stettenheim PR (2000) The integumentary morphology of modern birds—an overview. Am Zool 40:461–477

    Google Scholar 

  • Thomas ALR (1993) On the aerodynamics of birds’ tails. Philos Trans R Soc Lond B Biol Sci 340:361–380

    Article  Google Scholar 

  • Thomas ALR (1997) On the tails of birds. Bioscience 47:215–225

    Article  Google Scholar 

  • Thomas ALR, Balmford A (1995) How natural selection shapes bird’s tails. Am Nat 146:848–868

    Article  Google Scholar 

  • Thomas DB, McGraw KJ, Butler MW, Carrano MT, Madden O, James HF (2014a) Ancient origins and multiple appearances of carotenoid-pigmented feathers in birds. Proc R Soc B Biol Sci 281:1–9

    Article  Google Scholar 

  • Thomas DB, Nascimbene PC, Dove CJ, Grimaldi DA, James HF (2014b) Seeking carotenoid pigments in amber-preserved fossil feathers. Sci Rep 4:1–6

    Google Scholar 

  • Vinther J (2015) A guide to the field of palaeo color. BioEssays 37:643–656

    Article  PubMed  Google Scholar 

  • von Meyer H (1861) Archaeopteryx litographica (Vogel-Feder) und Pterodactylus von Solenhofen. Neues Jahrbuch für Mineralogie, Geognosie, Geologie, und Petrefakten-kunde: 678–679

    Google Scholar 

  • Wang W, O’Connor JK (2017) Morphological coevolution of the pygostyle and tail feathers in Early Cretaceous birds. Vertebrata Palasiatica 55:289–314

    Google Scholar 

  • Wang X-R, Chiappe LM, Teng F-F, Ji Q (2013) Xinghaiornis lini (Aves: Ornithothoraces) from the Early Cretaceous of Liaoning: an example of evolutionary mosaic in early birds. Acta Geologica Sinica English Edition 87:686–689

    Article  Google Scholar 

  • Wang M, O’Connor JK, Zhou Z-H (2014a) A robust enantiornithine bird from the Lower Cretaceous of China with scansorial adaptations. J Vertebr Paleontol 34:657–671

    Article  Google Scholar 

  • Wang M, Zhou Z-H, Xu G-H (2014b) The first enantiornithine bird from the Upper Cretaceous of China. J Vertebr Paleontol 34:135–145

    Article  CAS  Google Scholar 

  • Wang X-L, O’Connor JK, Zheng X-T, Wang M, Hu H, Zhou Z-H (2014c) Insights into the evolution of rachis dominated tail feathers from a new basal enantiornithine (Aves: Ornithothoraces). Biol J Linn Soc 113:805–819

    Article  Google Scholar 

  • Wang M, Zheng X-T, O’Connor JK, Lloyd GT, Wang X-L, Wang Y, Zhang X-M, Zhou Z-H (2015a) The oldest record of Ornithuromorpha reveals heterogeneous rates of morphological evolution among Early Cretaceous birds. Nat Commun 6:6987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R-F, Wang Y, Hu D-Y (2015b) Discovery of a new ornithuromorph genus, Juehuaornis gen. nov. from Lower Cretaceous of western Liaoning, China. Global Geology 34:7–11

    Google Scholar 

  • Wang Y-M, O’Connor JK, Li D-Q, You H-L (2015c) New information on postcranial skeleton of the Early Cretaceous Gansus yumenensis (Aves: Ornithuromorpha). Hist Biol 28:666–679

    Article  Google Scholar 

  • Wang M, O’Connor JK, Pan Y-H, Zhou Z-H (2017) A bizarre Early Cretaceous enantiornithine bird with unique crural feathers and an ornithuromorph plough-shaped pygostyle. Nat Commun 8:1–12

    Article  CAS  Google Scholar 

  • Wang X, O’Connor JK, Maina JN, Pan Y, Wang M, Wang Y, Zheng X, Zhou Z (2018) Archaeorhynchus preserving significant soft tissue including probable fossilized lungs. Proc Natl Acad Sci USA. Published online, 1–6. https://doi.org/10.1073/pnas.1805803115

  • Wang M, O’Connor J, Xu X, Zhou Z-H (2019) A new Jurassic scansoriopterygid and the loss of membranous wings in theropod dinosaurs. Nature 569(7755):256–259

    Article  CAS  PubMed  Google Scholar 

  • Williston SW (1896) On the dermal covering of Hesperornis. Kansas University Quarterly 5:53–54

    Google Scholar 

  • Xing L-D, McKellar RC, Wang M, Bai M, O’Connor JK, Benton MJ, Zhang J-P, Wang Y, Tseng K-W, Lockley M, Li G, Zhang W-W, Xu X (2016) Mummified precocial bird wings in mid-Cretaceous Burmese amber. Nat Commun 7:12089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing L-D, O’Connor JK, McKellar RC, Chiappe LM, Tseng K-W, Li G, Bai M (2017) A mid-Cretaceous enantiornithine (Aves) hatchling preserved in Burmese amber with unusual plumage. Gondwana Res 49:264–277

    Article  Google Scholar 

  • Xing L-D, Cockx P, McKellar RC, O’Connor J (2018a) Ornamental feathers in Cretaceous Burmese amber: resolving the enigma of rachis-dominated feather structure. J Palaeogeogr 7(13):1–18

    Google Scholar 

  • Xing L-D, O’Connor JK, McKellar RC, Chiappe LM, Bai M, Tseng K-W, Zhang J, Yang H-D, Fang J, Li G (2018b) A flattened enantiornithine in mid-Cretaceous Burmese amber: morphology and preservation. Sci Bull

    Google Scholar 

  • Xing L-D, McKellar RC, O’Connor JK, Bai M, Tseng K-W, Chiappe LM (2019a) A fully feathered enantiornithine foot and wing fragment preserved in mid-Cretaceous Burmese amber. Sci Rep 9(927):1–9

    Google Scholar 

  • Xing L-D, O’Connor J, Chiappe LM, McKellar RC, Carroll N, Hu H, Bai M, Lei F-M (2019b) A new enantiornithine with unusual pedal proportions found in amber. Curr Biol 29(14):2396–2401

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Guo Y (2009) The origin and early evolution of feathers: insights from recent paleontological and neontological data. Vertebrata Palasiatica 47:311–329

    Google Scholar 

  • Xu X, Zhou Z, Wang X, Kuang X, Du X (2003) Four-winged dinosaurs from China. Nature 421:335–340

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Zheng X-T, You H-L (2010) Exceptional dinosaur fossils show ontogenetic development of early feathers. Nature 464:1339–1341

    Google Scholar 

  • Xu X, Zheng X-T, Sullivan C, Zhang F-C, O’Connor JK, Wang X-L (2015) A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings. Nature 521:70–73

    Article  CAS  PubMed  Google Scholar 

  • You H-L, Lamanna MC, Harris JD, Chiappe LM, O’Connor J, Ji S-A, Lü J-C, Yuan C-X, Li D-Q, Zhang X, Lacovara KJ, Dodson P, Ji Q (2006) A nearly modern amphibious bird from the Early Cretaceous of northwestern China. Science 312:1640–1643

    Article  CAS  PubMed  Google Scholar 

  • Zelenkov NZ, Averianov AO (2016) A historical specimen of enantiornithine bird from the Early Cretaceous of Mongolia representing a new taxon with a specialized neck morphology. J Syst Palaeontol 14:319–338

    Article  Google Scholar 

  • Zhang F, Zhou Z (2000) A primitive enantiornithine bird and the origin of feathers. Science 290:1955–1960

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Zhou Z (2004) Leg feathers in an Early Cretaceous bird. Nature 431:925

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Zhou Z, Dyke GJ (2006) Feathers and ‘feather-like’ integumentary structures in Liaoning birds and dinosaurs. Geol J 41:395–404

    Article  Google Scholar 

  • Zhang F, Zhou Z, Benton MJ (2008a) A primitive confuciusornithid bird from China and its implications for early avian flight. Sci China Ser D Earth Sci 51:625–639

    Article  Google Scholar 

  • Zhang F-C, Zhou Z-H, Xu X, Wang X-L, Sullivan C (2008b) A bizarre Jurassic maniraptoran from China with elongate ribbon-like feathers. Nature 455:1105–1108

    Article  CAS  PubMed  Google Scholar 

  • Zhang F-C, Kearns SL, Orr PJ, Benton MJ, Zhou Z-H, Johnson D, Xu X, Wang X-L (2010) Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature 463:1075–1078

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z-H, Chiappe LM, Han G, Chinsamy A (2013) A large bird from the Early Cretaceous of China: new information on the skull of enantiornithines. J Vertebr Paleontol 33:1176–1189

    Article  CAS  Google Scholar 

  • Zheng X, Zhang Z, Hou L (2007) A new enantiornitine bird with four long rectrices from the Early Cretaceous of northern Hebei, China. Acta Geologica Sinica (English Edition) 81:703–708

    Article  Google Scholar 

  • Zheng X-T, Xu X, Zhou Z-H, Miao D, Zhang F-C (2010) Comment on “Narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability”. Science 330:320

    Article  CAS  PubMed  Google Scholar 

  • Zheng X-T, Wang X-L, O’Connor JK, Zhou Z-H (2012) Insight into the early evolution of the avian sternum from juvenile enantiornithines. Nat Commun 3:1–8

    Google Scholar 

  • Zheng X-T, O’Connor JK, Huchzermeyer FW, Wang X-L, Wang Y, Wang M, Zhou Z-H (2013a) Preservation of ovarian follicles reveals early evolution of avian reproductive behaviour. Nature 495:507–511

    Article  CAS  PubMed  Google Scholar 

  • Zheng X-T, Zhou Z-H, Wang X-L, Zhang F-C, Zhang X-M, Wang Y, Wei G-J, Wang S, Xu X (2013b) Hind wings in basal birds and the evolution of leg feathers. Science 339:1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Zheng X-T, O’Connor JK, Huchzermeyer FW, Wang X-L, Wang Y, Zhang X-M, Zhou Z-H (2014a) New specimens of Yanornis indicate a piscivorous diet and modern alimentary canal. PLoS One 9:e95036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X-T, O’Connor JK, Wang X-L, Wang M, Zhang X-M, Zhou Z-H (2014b) On the absence of sternal elements in Anchiornis (Paraves) and Sapeornis (Aves) and the complex early evolution of the avian sternum. Proc Natl Acad Sci USA 111:13900–13905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X-T, O’Connor JK, Wang X-L, Zhang X-M, Wang Y (2014c) New information on Hongshanornithidae (Aves: Ornithuromorpha) from a new subadult specimen. Vertebrata Palasiatica 52:217–232

    Google Scholar 

  • Zheng X-T, O’Connor JK, Wang X-L, Pan Y-H, Wang Y, Wang M, Zhou Z-H (2017) Exceptional preservation of soft tissue in a new specimen of Eoconfuciusornis and its biological implications. Natl Sci Rev 4:441–452

    Article  CAS  Google Scholar 

  • Zhou Z, Zhang F (2001) Two new ornithurine birds from the Early Cretaceous of western Liaoning, China. Chin Sci Bull 46:1258–1264

    Article  Google Scholar 

  • Zhou Z, Zhang F (2002) Largest bird from the Early Cretaceous and its implications for the earliest avian ecological diversification. Naturwissenschaften 89:34–38

    Article  PubMed  Google Scholar 

  • Zhou Z, Zhang F (2003) Anatomy of the primitive bird Sapeornis chaoyangensis from the Early Cretaceous of Liaoning, China. Can J Earth Sci 40:731–747

    Article  Google Scholar 

  • Zhou Z, Zhang F (2004) A precocial avian embryo from the Lower Cretaceous of China. Science 306:653

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Zhang F (2005) Discovery of an ornithurine bird and its implication for Early Cretaceous avian radiation. Proc Natl Acad Sci USA 102:18998–19002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z-H, Zhang F-C (2006) Mesozoic birds of China—a synoptic review. Vertebrata Palasiatica 44:74–98

    Google Scholar 

  • Zhou Z, Barrett PM, Hilton J (2003) An exceptionally preserved Lower Cretaceous ecosystem. Nature 421:807–814

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Chiappe LM, Zhang F (2005) Anatomy of the Early Cretaceous bird Eoenantiornis buhleri (Aves: Enantiornithes) from China. Can J Earth Sci 42:1331–1338

    Article  Google Scholar 

  • Zhou Z-H, Zhang F-C, Li Z-H (2009) A new basal orithurine (Jianchangornis microdonta gen. et sp. nov.) from the Lower Cretaceous of China. Vertebrata Palasiatica 47:299–310

    Google Scholar 

  • Zhou S, Zhou Z-H, O’Connor JK (2012) A new toothless ornithurine bird (Schizooura lii gen. et sp. nov.) from the Lower Cretaceous of China. Vertebrata Palasiatica 50:9–24

    Google Scholar 

  • Zhou S, Zhou Z-H, O’Connor JK (2013) A new piscivorous ornithuromorph from the Jehol Biota. Hist Biol 26:608–618

    Article  Google Scholar 

  • Zhou S, O’Connor JK, Wang M (2014) A new species from an ornithuromorph dominated locality of the Jehol Group. Chin Sci Bull 59:5366–5378

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank X-T. Zheng of the STM, H-L. Chang of the Henan Geological Museum, and C-L. Gao of the DNHM for access to specimens. I would also like to thank C. Sullivan and T. Stidham of the IVPP for useful discussions and M. Rothman for use of his art work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingmai O’Connor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Connor, J. (2020). The Plumage of Basal Birds. In: Foth, C., Rauhut, O. (eds) The Evolution of Feathers. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-27223-4_9

Download citation

Publish with us

Policies and ethics