Skip to main content

Multiaxial Stress Based High Cycle Fatigue Model for Adhesive Joint Interfaces

  • Conference paper
  • First Online:
Computational and Experimental Simulations in Engineering (ICCES 2019)

Abstract

Large utility wind turbine rotor blades (WTBs) comprise of adhesive joints with typically thick bond lines. The dynamic aero-elastic interaction of the WTB with the airflow generates multiaxial non-proportional, variable amplitude stress histories in the adhesive joints. Structural optimization of WTBs employed at an early design stage sets high demands on computationally efficient interface fatigue models capable of accurately predicting the critical locations prone for interface failure. The numerical stress-based interface fatigue model presented in this work uses the Drucker-Prager (DP) criterion to compute three different damage indices corresponding to the two interface shear tractions and the outward normal traction. The DP model was chosen because of its ability to consider shear strength enhancement under compression and shear strength reduction under tension. The model was implemented as Python plug-in for the commercially available finite element code Abaqus. The model was used to predict the interface damage of an adhesively bonded, tapered glass-epoxy composite cantilever I-beam tested by LM Wind Power under constant amplitude compression-compression tip load in the high cycle fatigue regime. Results show that the model was able to predict the location of debonding in the adhesive interface between the webfoot and the cap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drucker, D.C., Prager, W.: Solid mechanics and plastic analysis of limit design. Q. Appl. Math. 10(2) (1952)

    Google Scholar 

  2. Hahne, C., Knaust, U., Schürmann, H.: Zur Festigkeitsbewertung Von CFK-Strukturen Unter Pkw-Betriebslasten, Fatigue Evaluation of CFRP Structures under Complex Car Loads, in German, Materialpruefung/Materials Testing 56 (7–8). Carl Hanser Verlag (2014)

    Google Scholar 

  3. Pörtner, H.: Multi-axial fatigue models for composite lightweight structures. Master’s Thesis in Applied Mechanics Department of Applied Mechanics Division of Material and Computational Mechanics, Chalmers University of Technology, Göteborg, Sweden (2013)

    Google Scholar 

  4. Dassault Systémes: Abaqus Analysis Manual, vol. 6.16 (2016)

    Google Scholar 

  5. Belloni, F., Eder, M.A., Cherrier, B.: An improved sub-component fatigue testing method for material characterization. Exp. Tech. 42(5), 533–550 (2018)

    Article  Google Scholar 

  6. Zarouchas, D.S., Makris, A.A., Sayer, F., Van Hemelrijck, D., Van Wingerde, A.M.: Investigations on the mechanical behavior of a wind rotor blade subcomponent. Compos. Part B-Eng. 43(2) (2012)

    Article  Google Scholar 

  7. Lemaitre, J., Rodrigue, D.: Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Springer, Berlin (2005)

    Google Scholar 

Download references

Acknowledgements

This work was conducted within the industrial research project IMPACT with Journal number 64016-0065 funded by the Danish Energy Technology Development and Demonstration Program (EUDP). The support is gratefully acknowledged. The authors are very grateful for the scientific and technical support provided by Dr. Michael Wenani Nielsen and Dr. Thomas Karl Petersen from LM Wind Power.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Eder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eder, M.A., Semenov, S., Sala, M. (2020). Multiaxial Stress Based High Cycle Fatigue Model for Adhesive Joint Interfaces. In: Okada, H., Atluri, S. (eds) Computational and Experimental Simulations in Engineering. ICCES 2019. Mechanisms and Machine Science, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-030-27053-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27053-7_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27052-0

  • Online ISBN: 978-3-030-27053-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics