Skip to main content

Effect of Process Conditions on the Morphological Characteristics of Particles Obtained by Supercritical Antisolvent Precipitation

  • Chapter
  • First Online:
  • 231 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

A supercritical particle formation equipment, designed and constructed by our research group, was validated in this study using supercritical CO2 as an antisolvent. Ibuprofen sodium salt was successfully micronized by supercritical antisolvent (SAS) precipitation. Ethanol and CO2 was used as solvent and antisolvent, respectively, and the effect of the operating conditions on the precipitation yield, residual organic solvent content and particle morphology were evaluated using a split-plot experimental design and the analysis of variance (ANOVA) method. This study showed that when selecting appropriate process conditions, it is possible to produce a sheet-like morphology, which is the best for tableting purposes, with high precipitation yield (70%) and low residual solvent content (4.7 mg kg−1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Z. Knez, E. Weidner, Particles formation and particle design using supercritical fluids. Curr. Opin. Solid State Mater. Sci. 7, 353–361 (2003)

    Article  CAS  Google Scholar 

  2. S. Dalziel, G. Foggin, W. Ford, H. Gommeren, High pressure media milling system and process of forming particles, Patent US 20050258288 A1, Google Patents (2004)

    Google Scholar 

  3. P.J. Linstrom, W. Mallard, NIST Chemistry, National Institute of Standards and Technology. Gaithersburg (2003)

    Google Scholar 

  4. P. Gruber, M. Reher, Dosage form of sodium ibuprofen, Patent US 20040102522 A1, Google Patents (2004)

    Google Scholar 

  5. T.L. Rogers, K.P. Johnston, R.O. Williams 3rd, Solution-based particle formation of pharmaceutical powders by supercritical or compressed fluid CO2 and cryogenic spray-freezing technologies. Drug Dev. Ind. Pharm. 27, 1003–1015 (2001)

    Article  CAS  Google Scholar 

  6. K.M. Sharif, M.M. Rahman, J. Azmir, A. Mohamed, M.H.A. Jahurul, F. Sahena, I.S.M. Zaidul, Experimental design of supercritical fluid extraction—A review. J. Food Eng. 124, 105–116 (2014)

    Article  CAS  Google Scholar 

  7. G.E. Box, J.S. Hunter, W.G. Hunter, Statistics for experimenters: design, innovation, and discovery, 2nd edn. (Wiley, New York, 2005)

    Google Scholar 

  8. Á. Martín, K. Scholle, F. Mattea, D. Meterc, M.J. Cocero, Production of Polymorphs of Ibuprofen Sodium by Supercritical Antisolvent (SAS) Precipitation. Cryst. Growth Des. 9, 2504–2511 (2009)

    Article  Google Scholar 

  9. C.J. Chang, K.-L. Chiu, C.-Y. Day, A new apparatus for the determination of P–x–y diagrams and Henry’s constants in high pressure alcohols with critical carbon dioxide. J. Supercrit. Fluids 12, 223–237 (1998)

    Article  Google Scholar 

  10. C.S. Su, W.S. Lo, L.H. Lien, Micronization of fluticasone propionate using supercritical antisolvent (SAS) process. Chem. Eng. Technol. 34, 535–541 (2011)

    Article  CAS  Google Scholar 

  11. A. Visentin, S. Rodríguez-Rojo, A. Navarrete, D. Maestri, M.J. Cocero, Precipitation and encapsulation of rosemary antioxidants by supercritical antisolvent process. J. Food Eng. 109, 9–15 (2012)

    Article  CAS  Google Scholar 

  12. V. Majerik, G. Charbit, E. Badens, G. Horváth, L. Szokonya, N. Bosc, E. Teillaud, Bioavailability enhancement of an active substance by supercritical antisolvent precipitation. J. Supercrit. Fluids 40, 101–110 (2007)

    Article  CAS  Google Scholar 

  13. X. Sui, W. Wei, L. Yang, Y. Zu, C. Zhao, L. Zhang, F. Yang, Z. Zhang, Preparation, characterization and in vivo assessment of the bioavailability of glycyrrhizic acid microparticles by supercritical anti-solvent process. Int. J. Pharm. 423, 471–479 (2012)

    Article  CAS  Google Scholar 

  14. P. Imsanguan, S. Pongamphai, S. Douglas, W. Teppaitoon, P.L. Douglas, Supercritical antisolvent precipitation of andrographolide from Andrographis paniculata extracts: Effect of pressure, temperature and CO2 flow rate. Powder Technol. 200, 246–253 (2010)

    Article  CAS  Google Scholar 

  15. ICH, International Conference on Harmonization (ICH) of Technical Requirements for the Registration of Pharmaceuticals for Human Use. Guideline for Residual Solvents Step 4 (1997)

    Google Scholar 

  16. R. Adami, E. Reverchon, E. Järvenpää, R. Huopalahti, Supercritical AntiSolvent micronization of nalmefene HCl on laboratory and pilot scale. Powder Technol. 182, 105–112 (2008)

    Article  CAS  Google Scholar 

  17. M.-S. Kim, S. Lee, J.-S. Park, J.-S. Woo, S.-J. Hwang, Micronization of cilostazol using supercritical antisolvent (SAS) process: effect of process parameters. Powder Technol. 177, 64–70 (2007)

    Article  CAS  Google Scholar 

  18. E. Reverchon, G. Caputo, I. De Marco, Role of phase behavior and atomization in the supercritical antisolvent precipitation. Ind. Eng. Chem. Res. 42, 6406–6414 (2003)

    Article  CAS  Google Scholar 

  19. Y. Bakhbakhi, S. Alfadul, A. Ajbar, Precipitation of Ibuprofen Sodium using compressed carbon dioxide as antisolvent, European journal of pharmaceutical sciences: official journal of the European Federation for. Pharm. Sci. 48, 30–39 (2013)

    CAS  Google Scholar 

  20. E. Reverchon, Supercritical antisolvent precipitation of micro- and nano-particles. J. Supercrit. Fluids 15, 1–21 (1999)

    Article  CAS  Google Scholar 

  21. P.J. Linstrom, W. Mallard, NIST chemistry webbook (National Institute of Standards and Technology Gaithersburg, MD, 2001)

    Google Scholar 

  22. P. Pathak, M.J. Meziani, T. Desai, Y.-P. Sun, Formation and stabilization of ibuprofen nanoparticles in supercritical fluid processing. J. Supercrit. Fluids 37, 279–286 (2006)

    Article  CAS  Google Scholar 

  23. Y. Li, D.J. Yang, S.L. Chen, S.B. Chen, A.S.C. Chan, Comparative physicochemical characterization of phospholipids complex of puerarin formulated by conventional and supercritical methods. Pharm. Res. 25, 563–577 (2008)

    Article  CAS  Google Scholar 

  24. D.H. Won, M.S. Kim, S. Lee, J.S. Park, S.J. Hwang, Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process. Int. J. Pharm. 301, 199–208 (2005)

    Article  CAS  Google Scholar 

  25. R.E. Gordon, S.I. Amin, Crystallization of ibuprofen, Patent US 4476248 A, Google Patents (1984)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to CNPq (470916/2012-5) and FAPESP (2012/10685-8) for their financial support. M. Thereza M. G. Rosa and Eric Keven Silva thanks CNPq (140641/2011-4 and 140275/2014-2) for the Ph.D. assistantship. Diego T. Santos thanks the FAPESP (10/16485-5; 12/19304-7) and CAPES for the postdoctoral fellowships. M. Angela A. Meireles thanks CNPq for a productivity grant (301301/2010-7). The authors also thank Moyses N. Moraes for his assistance with the statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego T. Santos .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santos, D.T. et al. (2019). Effect of Process Conditions on the Morphological Characteristics of Particles Obtained by Supercritical Antisolvent Precipitation. In: Supercritical Antisolvent Precipitation Process. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-26998-2_2

Download citation

Publish with us

Policies and ethics