Skip to main content

On Characteristic Decomposition and Quasi-characteristic Decomposition

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11661))

Included in the following conference series:

  • 981 Accesses

Abstract

In this paper, the concepts of quasi-characteristic pair and quasi-characteristic decomposition are introduced. The former is a pair \((\mathcal {G}, \mathcal {C})\) of a reduced lexicographic Gröbner basis \(\mathcal {G}\) and the W-characteristic set \(\mathcal {C}\) which is regular and extracted from \(\mathcal {G}\); the latter is the decomposition of a polynomial set into finitely many quasi-characteristic pairs with associated zero relations. We show that the quasi-characteristic decomposition of any polynomial set can be obtained algorithmically regardless of the variable ordering condition. A new algorithm is presented for computing characteristic decomposition when the variable ordering condition is always satisfied, otherwise it degenerates to compute the quasi one. Some properties of quasi-characteristic pairs and decomposition are proved, and examples are given to illustrate the algorithm.

This work was partially supported by the National Natural Science Foundation of China (NSFC 11771034) and the Fundamental Research Funds for the Central Universities in China (YWF-19-BJ-J-324).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.lifl.fr/~lemaire/BCLM09/BCLM09-systems.txt.

References

  1. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J. Symbolic Comput. 28(1–2), 105–124 (1999)

    Article  MathSciNet  Google Scholar 

  2. Aubry, P.: Ensembles Triangulaires de Polynômes et Résolution de Systemes Algébriques. Implantation en Axiom. Ph.D. thesis, Université Pierre et Marie Curie, France (1999)

    Google Scholar 

  3. Becker, T., Weispfenning, V., Kredel, H.: Gröbner Bases: A Computational Approach to Commutative Algebra. Graduate Texts in Mathematics. Springer, New York (1993)

    Book  Google Scholar 

  4. Bender, M.R., Faugère, J.C., Tsigaridas, E.: Towards mixed Gröbner basis algorithms: The multihomogeneous and sparse case. In: Proceedings of ISSAC 2018, pp. 71–78. ACM Press (2018). https://doi.org/10.1145/3208976.3209018, https://hal.inria.fr/hal-01787423

  5. Boulier, F., Han, M., Lemaire, F., Romanovski, V.G.: Qualitative investigation of a gene model using computer algebra algorithms. Prog. Comput. Softw. 41(2), 105–111 (2015)

    Article  MathSciNet  Google Scholar 

  6. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Universität Innsbruck, Austria (1965)

    Google Scholar 

  7. Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal theory. In: Bose, N. (ed.) Multidimensional Systems Theory, pp. 184–232. Springer, Dordrecht (1985)

    Chapter  Google Scholar 

  8. Chen, C., Golubitsky, O., Lemaire, F., Maza, M.M., Pan, W.: Comprehensive triangular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75187-8_7

    Chapter  Google Scholar 

  9. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decompositions of polynomial systems. J. Symbolic Comput. 47(6), 610–642 (2012)

    Article  MathSciNet  Google Scholar 

  10. Cheng, J.S., Jin, K., Lazard, D.: Certified rational parametric approximationof real algebraic space curves with local generic position method. J. Symbolic Comput. 58, 18–40 (2013). https://doi.org/10.1016/j.jsc.2013.06.004. http://www.sciencedirect.com/science/article/pii/S0747717113000953

    Article  MathSciNet  MATH  Google Scholar 

  11. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer, New York (1997). https://doi.org/10.1007/978-3-662-41154-4

    Book  MATH  Google Scholar 

  12. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics. Springer, New York (1998). https://doi.org/10.1007/978-1-4757-6911-1

    Book  MATH  Google Scholar 

  13. Dahan, X.: On lexicographic Gröbner bases of radical ideals in dimension zero: Interpolation and structure, preprint at arXiv:1207.3887 (2012)

  14. Dong, R., Mou, C.: Decomposing polynomial sets simultaneously into Gröbner bases and normal triangular sets. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 77–92. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66320-3_7

    Chapter  Google Scholar 

  15. Faugère, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symbolic Comput. 16(4), 329–344 (1993)

    Article  MathSciNet  Google Scholar 

  16. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE) cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_3

    Chapter  Google Scholar 

  17. Gao, S., Volny, F., Wang, M.: A new framework for computing Gröbner bases. Math. Comput. 85(297), 449–465 (2016)

    Article  Google Scholar 

  18. Kalkbrener, M.: A generalized Euclidean algorithm for computing triangular representations of algebraic varieties. J. Symbolic Comput. 15(2), 143–167 (1993)

    Article  MathSciNet  Google Scholar 

  19. Kapur, D., Lu, D., Monagan, M.B., Sun, Y., Wang, D.: An efficient algorithm for computing parametric multivariate polynomial GCD. In: Proceedings of ISSAC 2018, pp. 239–246. ACM Press (2018). https://doi.org/10.1145/3208976.3208980

  20. Lazard, D.: Ideal bases and primary decomposition: case of two variables. J. Symbolic Comput. 1(3), 261–270 (1985)

    Article  MathSciNet  Google Scholar 

  21. Li, B., Wang, D.: An algorithm for transforming regular chain into normal chain. In: Kapur, D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, pp. 236–245. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87827-8_20

    Chapter  Google Scholar 

  22. Marinari, M.G., Mora, T.: A remark on a remark by Macaulay or enhancing Lazard structural theorem. Bull. Iran. Math. Soc. 29(1), 1–45 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Mou, C., Wang, D., Li, X.: Decomposing polynomial sets into simple sets over finite fields: the positive-dimensional case. Theoret. Comput. Sci. 468, 102–113 (2013)

    Article  MathSciNet  Google Scholar 

  24. Ritt, J.F.: Differential Algebra. American Mathematical Society, New York (1950)

    Book  Google Scholar 

  25. Shimoyama, T., Yokoyama, K.: Localization and primary decomposition of polynomial ideals. J. Symbolic Comput. 22(3), 247–277 (1996)

    Article  MathSciNet  Google Scholar 

  26. Verschelde, J., Verlinden, P., Cools, R.: Homotopies exploiting Newton polytopes for solving sparse polynomial systems. SIAM J. Numer. Anal. 31(3), 915–930 (1994)

    Article  MathSciNet  Google Scholar 

  27. Wang, D.: Computing triangular systems and regular systems. J. Symbolic Comput. 30(2), 221–236 (2000)

    Article  MathSciNet  Google Scholar 

  28. Wang, D.: Elimination Methods. Springer-Verlag, Wien (2001). https://doi.org/10.1007/978-3-7091-6202-6

    Book  MATH  Google Scholar 

  29. Wang, D.: On the connection between Ritt characteristic sets and Buchberger-Gröbner bases. Math. Comput. Sci. 10, 479–492 (2016)

    Article  MathSciNet  Google Scholar 

  30. Wang, D., Dong, R., Mou, C.: Decomposition of polynomial sets into characteristic pairs. arXiv:1702.08664 (2017)

  31. Weber, A., Sturm, T., Abdel-Rahman, E.O.: Algorithmic global criteria for excluding oscillations. Bull. Math. Biol. 73(4), 899–917 (2011). https://doi.org/10.1007/s11538-010-9618-0

    Article  MathSciNet  MATH  Google Scholar 

  32. Weispfenning, V.: Comprehensive Gröbner bases. J. Symbolic Comput. 14(1), 1–29 (1992)

    Article  MathSciNet  Google Scholar 

  33. Wu, W.T.: Basic principles of mechanical theorem proving in elementary geometries. J. Automated Reasoning 2(3), 221–252 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their detailed and helpful comments on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenqi Mou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, R., Mou, C. (2019). On Characteristic Decomposition and Quasi-characteristic Decomposition. In: England, M., Koepf, W., Sadykov, T., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2019. Lecture Notes in Computer Science(), vol 11661. Springer, Cham. https://doi.org/10.1007/978-3-030-26831-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26831-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26830-5

  • Online ISBN: 978-3-030-26831-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics