Skip to main content

The Implementation of the Symbolic-Numerical Method for Finding the Adiabatic Waveguide Modes of Integrated Optical Waveguides in CAS Maple

  • Conference paper
  • First Online:
Book cover Computer Algebra in Scientific Computing (CASC 2019)

Abstract

Computational problems of electrodynamics require an approximate solution of the system of Maxwell’s vector equations for regions with different geometries. The main methods for solving problems with the Maxwell equations are either finite difference methods or methods based on the Galerkin and Kantorovich expansions, or the finite element method. Each of the classes of methods is characterised by a wide range of permissible objects, but in each of the methods, the solution contains a large number of quantities known only in numerical form.

We have chosen a different approach, in which to describe the waveguide propagation of electromagnetic radiation we propose using the model of adiabatic waveguide modes. This model allows reducing Maxwell equations to a system of ordinary differential equations, which allows analysis of its solutions at the symbolic level.

A fundamental system of solutions of the system is constructed in symbolic form. A numerical method for computing the guided modes of a planar three-layer open waveguide is formulated and implemented using a vector model of the adiabatic waveguide modes. Phase constants calculated in the framework of the model of adiabatic waveguide modes were verified by comparison with those calculated in the framework of the scalar model.

The publication has been prepared with the support of the “RUDN University Program 5-100”  and funded by RFBR according to the research projects No. 18-07-00567 and 19-01-00645.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babich, V.M., Buldyrev, V.S.: Asymptotic Methods in Short-Wave Diffraction Problems. Nauka, Moscow (1972). [English translation: Springer Series on Wave Phenomena 4. Springer, Berlin Heidelberg New York 1991]

    Google Scholar 

  2. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Wiley, New York (1964)

    MATH  Google Scholar 

  3. Fletcher, C.A.J.: Computational Galerkin Methods. Springer, Heidelberg (1984). https://doi.org/10.1007/978-3-642-85949-6

    Book  MATH  Google Scholar 

  4. Gusev, A.A., et al.: Symbolic-numerical algorithms for solving the parametric self-adjoint 2D elliptic boundary-value problem using high-accuracy finite element method. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 151–166. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66320-3_12

    Chapter  Google Scholar 

  5. Sevastyanov, L.A., Sevastyanov, A.L., Tyutyunnik, A.A.: Analytical calculations in maple to implement the method of adiabatic modes for modelling smoothly irregular integrated optical waveguide structures. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 419–431. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10515-4_30

    Chapter  MATH  Google Scholar 

  6. Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice Hall, Englewood Cliffs (1982)

    Google Scholar 

  7. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North Holland Publishing Company, Amsterdam (1978)

    MATH  Google Scholar 

  8. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  9. Bogolyubov, A.N., Mukhartova, Yu.V., Gao, J., Bogolyubov, N.A.: Mathematical modeling of plane chiral waveguide using mixed finite elements. In: Progress in Electromagnetics Research Symposium, pp. 1216–1219 (2012)

    Google Scholar 

  10. Bogolyubov, A.N., Mukhartova, Y.V., Gao, T.: Calculation of a parallel-plate waveguide with a chiral insert by the mixed finite element method. Math. Models Comput. Simul. 5(5), 416–428 (2013)

    Article  MathSciNet  Google Scholar 

  11. Mukhartova, Y.V., Mongush, O.O., Bogolyubov, A.N.: Application of the finite-element method for solving a spectral problem in a waveguide with piecewise constant bi-isotropic filling. J. Commun. Technol. Electronics 62(1), 1–13 (2017)

    Article  Google Scholar 

  12. Adams, M.J.: An Introduction to Optical Waveguides. Wiley, New York (1981)

    Google Scholar 

  13. Marcuse, D.: Light Transmission Optics. Van Nostrand, New York (1974)

    Google Scholar 

  14. Tamir, T.: Guided-Wave Optoelectronics. Springer, Berlin (1990). https://doi.org/10.1007/978-3-642-97074-0

    Book  Google Scholar 

  15. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  16. Hartman, P.: Ordinary Differential Equations, Classics in Applied Mathematics, 38. Society for Industrial and Applied Mathematics, Philadelphia (2002). [1964]

    Book  Google Scholar 

  17. Johnson, W.: A Treatise on Ordinary and Partial Differential Equations. Wiley, New York (1913). In University of Michigan Historical Math Collection

    Google Scholar 

  18. Polyanin, A.D., Zaitsev, V.F., Moussiaux, A.: Handbook of First Order Partial Differential Equations. Taylor & Francis, London (2002)

    MATH  Google Scholar 

  19. Zwillinger, D.: Handbook of Differential Equations, 3rd edn. Academic Press, Boston (1997)

    MATH  Google Scholar 

  20. Mathematics-based software and services for education, engineering, and research. https://www.maplesoft.com/

  21. Lovetskiy, K.P., Gevorkyan, M.N., Kulyabov, D.S., Sevastyanov, A.L., Sevastyanov, L.A.: Waveguide modes of a planar optical waveguide. Math. Model. Geom. 3(01), 43–63 (2015)

    Article  Google Scholar 

  22. Ayryan, E.A., Egorov, A.A., Michuk, E.N., Sevastyanov, A.L., Sevastianov, L.A., Stavtsev, A.B.: Representations of Guided Modes of Integrated-Optical Multilayer Thin-Film Waveguides. E11–2011-31, LIT preprints (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Divakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Divakov, D.V., Sevastianov, A.L. (2019). The Implementation of the Symbolic-Numerical Method for Finding the Adiabatic Waveguide Modes of Integrated Optical Waveguides in CAS Maple. In: England, M., Koepf, W., Sadykov, T., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2019. Lecture Notes in Computer Science(), vol 11661. Springer, Cham. https://doi.org/10.1007/978-3-030-26831-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26831-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26830-5

  • Online ISBN: 978-3-030-26831-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics