Skip to main content

On Explicit Difference Schemes for Autonomous Systems of Differential Equations on Manifolds

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2019)

Abstract

The problem of the existence of explicit and at the same time conservative finite difference schemes that approximate a system of ordinary differential equations is investigated. An autonomous system of nonlinear ordinary differential equations on an algebraic manifold V is considered. A difference scheme for solving this system is called conservative, if the calculations of this scheme do not go beyond V, i.e., preserve it exactly. An explicit scheme is understood as such a difference scheme in which a system of linear equations is required to proceed to the next layer. We formulate the problem of constructing an explicit conservative scheme approximating a given autonomous system on a given manifold. For the case of 1-manifold, a solution to this problem is given and geometric obstacles to the existence of such difference schemes are indicated. Namely, it is proved that the scheme exists only if the genus of the integral curve is 1 or 0.

The publication has been prepared with the support of the “RUDN University Program 5-100”  and funded by RFBR according to the research projects Nos. 18-07-00567, 18-51-18005, and 19-01-00645 A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goriely, A.: Integrability and Nonintegrability of Dynamical Systems. World Scientific Publishing, Singapore (2001)

    Book  Google Scholar 

  2. Hairer, E., Wanner, G., Lubich, C.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2000). https://doi.org/10.1007/978-3-662-05018-7

    Book  MATH  Google Scholar 

  3. Polubarinova-Kochina, P. Ya.: On unambiguous solutions and algebraic integrals of a problem about rotation of a gyroscope at a motionless point. In:. Chaplygin, S.A. (ed.) Dvizhenie tverdogo tela vokrug nepodvizhnoj tochki. Academy of Sciences of the USSR, Moscow-Leningrad (1940). (in Russian)

    Google Scholar 

  4. Hairer, E., Wanner, G., Nørsett, S.P.: Solving Ordinary Differential Equations. Nonstiff Problems, vol. 1. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-78862-1

    Book  MATH  Google Scholar 

  5. Schlesinger, L.: Einführung in die Theorie der gewöhnlichen Differentialgleichungen auf Funktionentheoretischer Grundlage. De Gruyter, Berlin-Leipzig (1922)

    MATH  Google Scholar 

  6. Ayryan, E.A., Malykh, M.D., Sevastianov, L.A., Ying, Y.: Finite difference schemes and classical transcendental functions. In: Nikolov, G., Kolkovska, N., Georgiev, K. (eds.) NMA 2018. LNCS, vol. 11189, pp. 235–242. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10692-8_26

    Chapter  MATH  Google Scholar 

  7. Blinkov, Yu.A., Gerdt, V.P.: On computer algebra aided numerical solution of ODE by finite difference method. In: Vassiliev, N.N. (ed.) Polynomial Computer Algebra ’2019, 29–31. VVM Publication, St-Petersburg (2019)

    Google Scholar 

  8. Numerical Recipes (1993). https://www.numerical.recipes

  9. SageMath, the Sage Mathematics Software System (Version 7.4), The Sage Developers (2016). https://www.sagemath.org

  10. Descartes, R.: Geometry with the Appendix of Some Works of P. Fermat and Descartes’s Correspondence. GONTI NKTP SSSR, Moscow-Leningrad (1938). (in Russian)

    Google Scholar 

  11. Bostan, A., Chéze, G., Cluzeau, T., Weil, J.-A.: Efficient algorithms for computing rational first integrals and Darboux polynomials of planar polynomial vector fields. Math. Comput. 85, 1393–1425 (2016)

    Article  MathSciNet  Google Scholar 

  12. Malykh, M.D.: On integration of the first order differential equations in finite terms. J. Phys. Conf. Ser. 788 012026. (2017). https://doi.org/10.1088/1742-6596/788/1/012026

    Google Scholar 

  13. Zeuthen, H.G.: Lehrbuch der abzählenden Methoden der Geometrie. Teubner, Leipzig und Berlin (1914)

    Google Scholar 

  14. Hartshorne, R.: Algebraic Geometry. Springer, New York (1977). https://doi.org/10.1007/978-1-4757-3849-0

    Book  MATH  Google Scholar 

  15. Severi, F.: Lezioni di geometria algebrica. Angelo Graghi, Padova (1908)

    MATH  Google Scholar 

  16. Weierstrass, K.: Mathematische Werke, 4. Mayer & Müller, Berlin (1902)

    MATH  Google Scholar 

  17. Painlevé, P.: Leçons sur la théorie analytique des équations différentielles, professées à Stockholm (septembre, octobre, novembre 1895) sur l’invitation de S. M. le roi de Suède et de Norwège. In: Œuvres de Painlevé, 1, Paris, CNRS (1971)

    Google Scholar 

  18. Umemura, H.: Birational automorphism groups and differential equations. Nagoya Math. J. 119, 1–80 (1990)

    Article  MathSciNet  Google Scholar 

  19. Malykh, M.D.: On transcendental functions arising from integrating differential equations in finite terms. J. Math. Sci. 209(6), 935–952 (2015). https://doi.org/10.1007/s10958-015-2539-6

    Article  MathSciNet  MATH  Google Scholar 

  20. Khashin, S.I.: A symbolic-numeric approach to the solution of the Butcher equations. Can. Appl. Math. Q. 17(1), 555–569 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Khashin, S.I.: Butcher algebras for Butcher systems. Numer. Algorithms 63(4), 679–689 (2013). https://doi.org/10.1007/s11075-012-9647-x

    Article  MathSciNet  MATH  Google Scholar 

  22. NIST Digital Library of Mathematical Functions (2018). Version 1.0.21. https://dlmf.nist.gov

  23. Weierstrass, K.: Mathematische Werke, 1. Mayer & Müller, Berlin (1892)

    Google Scholar 

  24. Enolskii, V.Z., Pronine, M., Richter, P.H.: Double pendulum and \(\vartheta \)-divisor. J. Nonlinear Sci. 13, 157–174 (2003). https://doi.org/10.1007/s00332-002-0514-0

    Article  MathSciNet  MATH  Google Scholar 

  25. Garnier, R.: Sur une classe de systèmes différentiels abéliens déduits de la théorie des équations linéaires. Rendiconti del Circolo mat. di Palermo 43, 155–191 (1919)

    Article  Google Scholar 

  26. Malykh, M.D., Sevastianov, L.A.: On an example of a system of differential equations that are integrated in Abelian functions. J. Phys. Conf. Ser. 937 012027 (2017). https://doi.org/10.1088/1742-6596/937/1/012027

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Malykh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ayryan, E.A., Malykh, M.D., Sevastianov, L.A., Ying, Y. (2019). On Explicit Difference Schemes for Autonomous Systems of Differential Equations on Manifolds. In: England, M., Koepf, W., Sadykov, T., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2019. Lecture Notes in Computer Science(), vol 11661. Springer, Cham. https://doi.org/10.1007/978-3-030-26831-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26831-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26830-5

  • Online ISBN: 978-3-030-26831-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics