Skip to main content

Root-Finding with Implicit Deflation

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11661))

Included in the following conference series:

  • 965 Accesses

Abstract

Functional iterations such as Newton’s are a popular tool for polynomial root-finding. We consider realistic situation where some (e.g., better-conditioned) roots have already been approximated and where further computations is directed to the approximation of the remaining roots. Such a situation is also realistic for root by means of subdivision iterations. A natural approach of applying explicit deflation has been much studied and recently advanced by one of the authors of this paper, but presently we consider the alternative of implicit deflation combined with the mapping of the variable and reversion of an input polynomial. We also show another unexplored direction for substantial further progress in this long and extensively studied area. Namely we dramatically increase the local efficiency of root-finding by means of the incorporation of fast algorithms for multipoint polynomial evaluation and Fast Multipole Method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This set is universal for all polynomials p(x) that have all roots lying in the unit disc \(D(0,1)=\{z:~|z|=1\}\). Given any polynomial p(x) one can move all its roots into this disc by means of first readily computing a reasonably close upper bound on the absolute values of all roots and then properly shifting and scaling the variable x.

References

  1. Aberth, O.: Iteration methods for finding all zeros of a polynomial simultaneously. Math. Comput. 27(122), 339–344 (1973)

    Article  MathSciNet  Google Scholar 

  2. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-0701-6

    Book  MATH  Google Scholar 

  3. Bini, D.A., Fiorentino, G.: Design, analysis, and implementation of a multiprecision polynomial rootfinder. Numer. Algorithms 23, 127–173 (2000)

    Article  MathSciNet  Google Scholar 

  4. Bini, D.A., Robol, L.: Solving secular and polynomial equations: a multiprecision algorithm. J. Comput. Appl. Math. 272, 276–292 (2014)

    Article  MathSciNet  Google Scholar 

  5. Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algorithm for complex root isolation based on the Pellet test and Newton iteration. J. Symb. Comput. 86, 51–96 (2018)

    Article  MathSciNet  Google Scholar 

  6. Barba, L.A., Yokota, R.: How will the fast multipole method fare in Exascale Era? SIAM News 46(6), 1–3 (2013)

    Google Scholar 

  7. Durand, E.: Solutions numériques des équations algébriques, Tome 1: Equations du type F(X)=0. Racines d’un polynôme. Masson, Paris (1960)

    Google Scholar 

  8. Delves, L.M., Lyness, J.N.: A numerical method for locating the zeros of an analytic function. Math. Comput. 21, 543–560 (1967). https://doi.org/10.1090/S0025-5718-1967-0228165-4

    Article  MathSciNet  MATH  Google Scholar 

  9. Ehrlich, L.W.: A modified Newton method for polynomials. Commun. ACM 10, 107–108 (1967)

    Article  Google Scholar 

  10. Hazewinkel, M. (ed.) Encyclopedia of Mathematics. Newton method. Springer Science+Business Media B.V. Kluwer Academic Publishers (1994, first edition), (2000, second edition). ISBN 978-1-55608-010-4

    Google Scholar 

  11. Gerasoulis, A., Grigoriadis, M.D., Sun, L.: A fast algorithm for Trummer’s problem. SIAM J. Sci. Stat. Comput. 8(1), 135–138 (1987)

    Article  MathSciNet  Google Scholar 

  12. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulation. J. Comput. Phys. 73, 325–348 (1987)

    Article  MathSciNet  Google Scholar 

  13. Householder, A.S.: Dandelin, Lobachevskii, or Graeffe? Am. Math. Monthly 66, 464–466 (1959)

    MATH  Google Scholar 

  14. Henrici, P.: Applied and Computational Complex Analysis. Vol. 1: Power Series, Integration, Conformal Mapping, Location of Zeros. Wiley, New York (1974)

    Google Scholar 

  15. Henrici, P., Gargantini, I.: Uniformly convergent algorithms for the simultaneous approximation of all zeros of a polynomial. In: Dejon, B., Henrici, P. (eds.) Constructive Aspects of the Fundamental Theorem of Algebra. Wiley, New York (1969)

    MATH  Google Scholar 

  16. Habbard, J., Schleicher, D., Sutherland, S.: How to find all roots of complex polynomials by Newton’s method. Invent. Math. 146, 1–33 (2001)

    Article  MathSciNet  Google Scholar 

  17. Imbach, R., Pan, V.Y., Yap, C.: Implementation of a near-optimal complex root clustering algorithm. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.) ICMS 2018. LNCS, vol. 10931, pp. 235–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96418-8_28

    Chapter  Google Scholar 

  18. Kerner, I.O.: Ein Gesamtschrittverfahren zur Berechung der Nullstellen von Polynomen. Numerische Math. 8, 290–294 (1966)

    Article  MathSciNet  Google Scholar 

  19. Kirrinnis, P.: Polynomial factorization and partial fraction decomposition by simultaneous Newton’s iteration. J. Complex. 14, 378–444 (1998)

    Article  MathSciNet  Google Scholar 

  20. Kim, M.-H., Sutherland, S.: Polynomial root-finding algorithms and branched covers. SIAM J. Comput. 23(2), 415–436 (1994). https://doi.org/10.1137/S0097539791201587

    Article  MathSciNet  MATH  Google Scholar 

  21. Mahley, H.: Zur Auflösung Algebraisher Gleichngen. Z. Andew. Math. Physik. 5, 260–263 (1954)

    Article  Google Scholar 

  22. McNamee, J.M.: Numerical Methods for Roots of Polynomials, Part I, XIX+354 pages. Elsevier (2007)

    Google Scholar 

  23. Moenck, R., Borodin, A.: Fast modular transforms via division. In: Proceedings of 13th Annual Symposium on Switching and Automata Theory (SWAT 1972), pp. 90–96. IEEE Computer Society Press (1972)

    Google Scholar 

  24. Mourrain, B., Pan, V.Y.: Lifting/descending processes for polynomial zeros and applications. J. Complex. 16(1), 265–273 (2000)

    Article  Google Scholar 

  25. McNamee, J.M., Pan, V.Y.: Numerical Methods for Roots of Polynomials, Part II, XXI+728 pages. Elsevier (2013)

    Google Scholar 

  26. Ostrowski, A.M.: Solution of Equations and Systems of Equations. Academic Press, New York (1966)

    MATH  Google Scholar 

  27. Pan, V.Y.: Optimal (up to polylog factors) sequential and parallel algorithms for approximating complex polynomial zeros. In: Proceedings of the 27th Annual ACM Symposium on Theory of Computing (STOC 1995), pp. 741–750. ACM Press, New York (1995)

    Google Scholar 

  28. Pan, V.Y.: Approximation of complex polynomial zeros: modified quadtree (Weyl’s) construction and improved Newton’s iteration. J. Complex. 16(1), 213–264 (2000)

    Article  Google Scholar 

  29. Pan, V.Y.: Structured Matrices and Polynomials: Unified Superfast Algorithms. Springer, New York (2001). https://doi.org/10.1007/978-1-4612-0129-8

    Book  MATH  Google Scholar 

  30. Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for factorization and rootfinding. J. Symb. Comput. 33(5), 701–733 (2002)

    Article  Google Scholar 

  31. Pan, V.Y.: Transformations of matrix structures work again. Linear Algebra Appl. 465, 1–32 (2015)

    Article  MathSciNet  Google Scholar 

  32. Pan, V.Y.: Simple and nearly optimal polynomial root-finding by means of root radii approximation. In: Kotsireas, I.S., Martinez-Moro, E. (eds.) ACA 2015. Springer Proceedings in Mathematics and Statistics, Ch. 23: Applications of Computer Algebra, vol. 198, pp. 329–340. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-56932-1_23

    Chapter  Google Scholar 

  33. Pan, V.Y.: Old and new nearly optimal polynomial root-finders. In: CASC (2019). arxiv:1805.12042 [cs.NA], May 2019

  34. Renegar, J.: On the worst-case arithmetic complexity of approximating zeros of polynomials. J. Complex. 3(2), 90–113 (1987)

    Article  MathSciNet  Google Scholar 

  35. Schönhage, A.: The fundamental theorem of algebra in terms of computational complexity. Technical report, Math. Dept., University of Tübingen, Tübingen, Germany (1982)

    Google Scholar 

  36. Schleicher, D., Stoll, R.: Newton’s method in practice: finding all roots of polynomials of degree one million efficiently. Theor. Comput. Sci. 681, 146–166 (2017)

    Article  MathSciNet  Google Scholar 

  37. Tilli, P.: Convergence conditions of some methods for the simultaneous computation of polynomial zeros. Calcolo 35, 3–15 (1998)

    Article  MathSciNet  Google Scholar 

  38. Weierstrass, K.: Neuer Beweis des Fundamentalsatzes der Algebra. Mathematische Werker, Tome III, pp. 251–269. Mayer und Mueller, Berlin (1903)

    Google Scholar 

  39. Weyl, H.: Randbemerkungen zu Hauptproblemen der Mathematik. II. Fundamentalsatz der Algebra and Grundlagen der Mathematik. Mathematische Zeitschrift 20, 131–151 (1924)

    Article  MathSciNet  Google Scholar 

  40. Werner, W.: Some improvements of classical iterative methods for the solution of nonlinear equations. In: Allgower, E.L., Glashoff, K., Peitgen, H.-O. (eds.) Numerical Solution of Nonlinear Equations. LNM, vol. 878, pp. 426–440. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0090691

    Chapter  Google Scholar 

Download references

Acknowledgements

The research of R. Inbach, V. Y. Pan, C. Yap, and V. Zaderman was supported by NSF Grant CCF–1563942. The research of V. Y. Pan and V. Zaderman was also supported by NSF Grants CCF 1116736 and PSC CUNY Award 69813 00 48. The research of Ilias Kotsireas was supported by an NSERC grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Y. Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Imbach, R., Pan, V.Y., Yap, C., Kotsireas, I.S., Zaderman, V. (2019). Root-Finding with Implicit Deflation. In: England, M., Koepf, W., Sadykov, T., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2019. Lecture Notes in Computer Science(), vol 11661. Springer, Cham. https://doi.org/10.1007/978-3-030-26831-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26831-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26830-5

  • Online ISBN: 978-3-030-26831-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics