Skip to main content

Revisit Sparse Polynomial Interpolation Based on Randomized Kronecker Substitution

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11661))

Abstract

In this paper, a new reduction based interpolation algorithm for general black-box multivariate polynomials over finite fields is given. The method is based on two main ingredients. A new Monte Carlo method is given to reduce the black-box multivariate polynomial interpolation problem to the black-box univariate polynomial interpolation problem over any ring. The reduction algorithm leads to multivariate interpolation algorithms with better or the same complexities in most cases when combining with various univariate interpolation algorithms. A modified univariate Ben-Or and Tiwari algorithm over the finite field is proposed, which has better total complexity than the Lagrange interpolation algorithm. Combining our reduction method and the modified univariate Ben-Or and Tiwari algorithm, we give a Monte Carlo multivariate interpolation algorithm, which has better total complexity in most cases for sparse interpolation of black-box polynomial over finite fields.

Partially supported by an NSFC grant No.11688101.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09519-5_73

    Chapter  Google Scholar 

  2. Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polynomial interpolation. In: Proceedings STOC 1988, pp. 301–309. ACM Press (1988)

    Google Scholar 

  3. Kaltofen, E.L., Lakshman, Y.N.: Improved sparse multivariate polynomial interpolation algorithms. In: Proceedings ISSAC 1988, pp. 467–474. Springer-Verlag (1988)

    Google Scholar 

  4. Zippel, R.: Interpolating polynomials from their values. J. Symb. Comp. 9, 375–403 (1990)

    Article  MathSciNet  Google Scholar 

  5. Lakshman, Y.N., Saunders, B.D.: Sparse polynomial interpolation in nonstandard bases. SIAM J. Comput. 24(2), 387–397 (1995)

    Article  MathSciNet  Google Scholar 

  6. Klivans, A.R., Spielman, D.: Randomness efficient identity testing of multivariate polynomials. In: Proceedings STOC 2001, pp. 216–223. ACM Press (2001)

    Google Scholar 

  7. Grigoriev, D.Y., Karpinski, M., Singer, M.F.: Fast parallel algorithms for sparse multivariate polynomial interpolation over finite fields. SIAM J. Comput. 19, 1059–1063 (1990)

    Article  MathSciNet  Google Scholar 

  8. Giesbrecht, M., Roche, D.S.: Diversification improves interpolation. In: Proceedings ISSAC 2011, pp. 123–130, ACM Press (2011)

    Google Scholar 

  9. Huang, M.D.A., Rao, A.J.: Interpolation of sparse multivariate polynomials over large finite fields with applications. J. Algorithms 33, 204–228 (1999)

    Article  MathSciNet  Google Scholar 

  10. Javadi, S.M.M., Monagan, M.: Parallel sparse polynomial interpolation over finite fields. In: Proceedings PASCO 2010, pp. 160–168. ACM Press (2010)

    Google Scholar 

  11. Kaltofen, E.L., Lee, W.S.: Early termination in sparse interpolation algorithms. J. Symbolic Comput. 36, 365–400 (2003)

    Article  MathSciNet  Google Scholar 

  12. Hao, Z., Kaltofen, E.L., Zhi, L.: Numerical sparsity determination and early termination. In: Proceedings ISSAC 2017, pp. 247–254. ACM Press (2016)

    Google Scholar 

  13. Giesbrecht, M., Labahn, G., Lee, W.: Symbolic-numeric sparse interpolation of multivariate polynomials. In: Proceedings ISSAC 2006, pp. 116–123. ACM Press (2006)

    Google Scholar 

  14. Kaltofen, E.L., Lee, W.S., Yang, Z.: Fast estimates of hankel matrix condition numbers and numeric sparse interpolation. In: SNC 2011, pp. 130–136. ACM Press (2011)

    Google Scholar 

  15. Cuyt, A., Lee, W.S.: A new algorithm for sparse interpolation of multivariate polynomials. Theor. Comput. Sci. 409(2), 180–185 (2008)

    Article  MathSciNet  Google Scholar 

  16. Giesbrecht, M., Roche, D.S.: Interpolation of shifted-lacunary polynomials. Comput. Complex. 19(3), 333–354 (2010)

    Article  MathSciNet  Google Scholar 

  17. Bläser, M., Jindal, G.: A new deterministic algorithm for sparse multivariate polynomial interpolation. In: Proceedings ISSAC 2014, pp. 51–58. ACM Press (2014)

    Google Scholar 

  18. Arnold, A., Giesbrecht, M., Roche, D.S.: Faster sparse multivariate polynomial interpolation of straight-line programs. J. Symbolic Comput. 75, 4–24 (2016)

    Article  MathSciNet  Google Scholar 

  19. Arnold, A., Giesbrecht, M., Roche, D.S.: Faster sparse interpolation of straight-line programs. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 61–74. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02297-0_5

    Chapter  Google Scholar 

  20. Arnold, A., Roche, D.S.: Multivariate sparse interpolation using randomized Kronecker substitutions. In: ISSAC 2014, pp. 35–42. ACM Press (2014)

    Google Scholar 

  21. Garg, S., Schost, E.: Interpolation of polynomials given by straight-line programs. Theor. Comput. Sci. 410, 2659–2662 (2009)

    Article  MathSciNet  Google Scholar 

  22. Huang, Q.L., Gao, X.S.: Faster interpolation algorithms for sparse multivariate polynomials given by straight-Line programs. arXiv 1709.08979v4 (2017)

    Google Scholar 

  23. Huang, Q.L.: Sparse polynomial interpolation over fields with large or zero characteristic. In: Proceedings ISSAC 2019, ACM Press, to appear (2019)

    Google Scholar 

  24. Avendaño, M., Krick, T., Pacetti, A.: Newton-Hensel interpolation lifting. Found. Comput. Math. 6(1), 82–120 (2006)

    Article  MathSciNet  Google Scholar 

  25. Alon, N., Mansour, Y.: Epsilon-discrepancy sets and their application for interpolation of sparse polynomials. Inform. Process. Lett. 54(6), 337–342 (1995)

    Article  MathSciNet  Google Scholar 

  26. Mansour, Y.: Randomized interpolation and approximation of sparse polynomials. SIAM J. Comput. 24(2), 357–368 (1995)

    Article  MathSciNet  Google Scholar 

  27. Arnold, A.: Sparse polynomial interpolation and testing. PhD Thesis, Waterloo Unversity (2016)

    Google Scholar 

  28. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  29. Gathen, J., von zur Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  30. Pollard, J.M.: Monte Carlo Methods for Index Computation (mod \(p\)). Math. Comput. 32(143), 918–924 (1978)

    MathSciNet  MATH  Google Scholar 

  31. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2015)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Shan Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, QL., Gao, XS. (2019). Revisit Sparse Polynomial Interpolation Based on Randomized Kronecker Substitution. In: England, M., Koepf, W., Sadykov, T., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2019. Lecture Notes in Computer Science(), vol 11661. Springer, Cham. https://doi.org/10.1007/978-3-030-26831-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26831-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26830-5

  • Online ISBN: 978-3-030-26831-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics