Skip to main content

Lipoxygenase in Ferroptosis

  • Chapter
  • First Online:
Ferroptosis in Health and Disease
  • 1758 Accesses

Abstract

Cell death is indispensable for the maintenance of organic homeostasis and embryonic development under physical circumstances. Ferroptosis is a newly discovered type of cell death by Stockwell research group in 2012. It is distinct from other cell death modalities including apoptosis, necroptosis, autophagy, and pyroptosis at morphological, genetic, and biochemical levels. It is well known that ferroptotic cell death occurs through lipid peroxidation accumulation. Lipoxygenase (ALOX) serves as one of the major enzymes for the oxygenation of arachidonic acid (AA), an essential polyunsaturated fatty acid (PUFA), finally triggering lipid peroxidation and ferroptosis. Here, we make a summarization of basic knowledge of ALOX including its nomenclature, distribution in different organs, and its metabolites. Additionally, the relationship between ALOX and ferroptosis in human diseases such as neurological disorders and cancers is also discussed. We propose that ALOX may serve as a potential therapeutic target for treating multiple disorders via suppressing ferroptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Arachidonic acid

ACSL4:

Acyl-CoA synthetase long chain family member 4

AD:

Alzheimer’s disease

AdA:

Adrenic acid

ALOX:

Lipoxygenase

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

Fer-1:

Ferrostatin-1

GPX4:

Glutathione peroxidase 4

HETE:

Hydroxyeicosatetraenoic acid

HPETE:

Hydroperoxyeicosatetraenoic acid

HPODE:

Hydroperoxyoctadecadienoic acid

HODE:

Hydroxyoctadecadienoic acid

LA:

Linoleic acid

LT:

Leukotriene

PE:

Phosphatidylethanolamine

PEBP1:

PE-binding protein 1

PUFAs:

Polyunsaturated fatty acids

ROS:

Reactive oxygen species

References

  • Abeti R, Parkinson MH, Hargreaves IP et al (2016) Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich’s ataxia. Cell Death Dis 7:e2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ackermann JA, Hofheinz K, Zaiss MM et al (2017) The double-edged role of 12/15-lipoxygenase during inflammation and immunity. Biochim Biophys Acta Mol Cell Biol Lipids 1862(4):371–381

    Article  CAS  PubMed  Google Scholar 

  • Ai F, Zheng J, Zhang Y et al (2017) Inhibition of 12/15-LO ameliorates CVB3-induced myocarditis by activating Nrf2. Chem Biol Interact 272:65–71

    Article  CAS  PubMed  Google Scholar 

  • Chu J, Pratico D (2016) The 5-Lipoxygenase as modulator of Alzheimer’s gamma-secretase and therapeutic target. Brain Res Bull 126(Pt 2):207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad M, Angeli JP, Vandenabeele P et al (2016) Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 15(5):348–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad M, Kagan VE, Bayir H et al (2018) Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev 32(9-10):602–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cyrus T, Pratico D, Zhao L et al (2001) Absence of 12/15-lipoxygenase expression decreases lipid peroxidation and atherogenesis in apolipoprotein e-deficient mice. Circulation 103(18):2277–2282

    Article  CAS  PubMed  Google Scholar 

  • Deas E, Cremades N, Angelova PR et al (2016) Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson’s disease. Antioxid Redox Signal 24(7):376–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrian AD, Lieb DC, Cole BK et al (2011) Functional and pathological roles of the 12- and 15-lipoxygenases. Prog Lipid Res 50(1):115–131

    Article  CAS  PubMed  Google Scholar 

  • Doll S, Proneth B, Tyurina YY et al (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13(1):91–98

    Article  CAS  PubMed  Google Scholar 

  • Dolma S, Lessnick SL, Hahn WC et al (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3(3):285–296

    Article  CAS  PubMed  Google Scholar 

  • Drefs M, Thomas MN, Guba M et al (2017) Modulation of glutathione hemostasis by inhibition of 12/15-lipoxygenase prevents ROS-mediated cell death after hepatic ischemia and reperfusion. Oxidative Med Cell Longev 2017:8325754

    Article  CAS  Google Scholar 

  • Elshazly SM, Abd El Motteleb DM, Nassar NN (2013) The selective 5-LOX inhibitor 11-keto-beta-boswellic acid protects against myocardial ischemia reperfusion injury in rats: involvement of redox and inflammatory cascades. Naunyn Schmiedeberg’s Arch Pharmacol 386(9):823–833

    Article  CAS  Google Scholar 

  • Friedmann Angeli JP, Schneider M, Proneth B et al (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16(12):1180–1191

    Article  CAS  PubMed  Google Scholar 

  • Garg AD, Agostinis P (2017) Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol Rev 280(1):126–148

    Article  CAS  PubMed  Google Scholar 

  • Hangauer MJ, Viswanathan VS, Ryan MJ et al (2017) Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551(7679):247–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heirman I, Ginneberge D, Brigelius-Flohe R et al (2006) Blocking tumor cell eicosanoid synthesis by GP x 4 impedes tumor growth and malignancy. Free Radic Biol Med 40(2):285–294

    Article  CAS  PubMed  Google Scholar 

  • Imai H, Matsuoka M, Kumagai T et al (2017) Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr Top Microbiol Immunol 403:143–170

    CAS  PubMed  Google Scholar 

  • Joshi YB, Giannopoulos PF, Pratico D (2015) The 12/15-lipoxygenase as an emerging therapeutic target for Alzheimer’s disease. Trends Pharmacol Sci 36(3):181–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagan VE, Mao G, Qu F et al (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13(1):81–90

    Article  CAS  PubMed  Google Scholar 

  • Karuppagounder SS, Alin L, Chen Y et al (2018) N-acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with prostaglandin E2 to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice. Ann Neurol 84(6):854–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenny EM, Fidan E, Yang Q et al (2019) Ferroptosis contributes to neuronal death and functional outcome after traumatic brain injury. Crit Care Med 47(3):410–418

    Article  PubMed  PubMed Central  Google Scholar 

  • Khor TO, Huang MT, Prawan A et al (2008) Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prev Res (Phila) 1(3):187–191

    Article  CAS  Google Scholar 

  • Krieg P, Furstenberger G (2014) The role of lipoxygenases in epidermis. Biochim Biophys Acta 1841(3):390–400

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16(1):3–11

    Article  CAS  PubMed  Google Scholar 

  • Kuhn H, Borchert A (2002) Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes. Free Radic Biol Med 33(2):154–172

    Article  CAS  PubMed  Google Scholar 

  • Li QQ, Li Q, Jia JN et al (2018) 12/15 lipoxygenase: a crucial enzyme in diverse types of cell death. Neurochem Int 118:34–41

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen Q, Ran D et al (2019a) Changes in the levels of 12/15-lipoxygenase, apoptosis-related proteins and inflammatory factors in the cortex of diabetic rats and the neuroprotection of baicalein. Free Radic Biol Med 134:239–247

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Li Q-Q, Jia J-N, Sun Q-Y, Zhou H-H, Jin W-L, Mao X-Y (2019b) Baicalein exerts neuroprotective effects in FeCl3-induced posttraumatic epileptic seizures via suppressing ferroptosis. Front Pharmacol 10(638):1–13

    Google Scholar 

  • Liu Y, Wang W, Li Y et al (2015) The 5-lipoxygenase inhibitor zileuton confers neuroprotection against glutamate oxidative damage by inhibiting ferroptosis. Biol Pharm Bull 38(8):1234–1239

    Article  CAS  PubMed  Google Scholar 

  • Maloberti PM, Duarte AB, Orlando UD et al (2010) Functional interaction between acyl-CoA synthetase 4, lipooxygenases and cyclooxygenase-2 in the aggressive phenotype of breast cancer cells. PLoS One 5(11):e15540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manev H, Uz T, Sugaya K et al (2000) Putative role of neuronal 5-lipoxygenase in an aging brain. FASEB J 14(10):1464–1469

    Article  CAS  PubMed  Google Scholar 

  • Mashima R, Okuyama T (2015) The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol 6:297–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller T, Dewitz C, Schmitz J et al (2017) Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell Mol Life Sci 74(19):3631–3645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orlando UD, Garona J, Ripoll GV et al (2012) The functional interaction between Acyl-CoA synthetase 4, 5-lipooxygenase and cyclooxygenase-2 controls tumor growth: a novel therapeutic target. PLoS One 7(7):e40794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul BD, Sbodio JI, Xu R et al (2014) Cystathionine gamma-lyase deficiency mediates neurodegeneration in Huntington’s disease. Nature 509(7498):96–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Probst L, Dachert J, Schenk B et al (2017) Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from ferroptotic cell death. Biochem Pharmacol 140:41–52

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro AR, do Nascimento Valenca JD, da Silva Santos J et al (2016) The effects of baicalein on gastric mucosal ulcerations in mice: protective pathways and anti-secretory mechanisms. Chem Biol Interact 260:33–41

    Article  CAS  PubMed  Google Scholar 

  • Roos J, Grosch S, Werz O et al (2016) Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: a basis for novel drugs targeting cancer cells? Pharmacol Ther 157:43–64

    Article  CAS  PubMed  Google Scholar 

  • Schneider M, Wortmann M, Mandal PK et al (2010) Absence of glutathione peroxidase 4 affects tumor angiogenesis through increased 12/15-lipoxygenase activity. Neoplasia 12(3):254–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah R, Shchepinov MS, Pratt DA (2018) Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent Sci 4(3):387–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shintoku R, Takigawa Y, Yamada K et al (2017) Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci 108(11):2187–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh NK, Rao GN (2019) Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Prog Lipid Res 73:28–45

    Article  CAS  PubMed  Google Scholar 

  • Skouta R, Dixon SJ, Wang J et al (2014) Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136(12):4551–4556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockwell BR, Friedmann Angeli JP, Bayir H et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vagnozzi AN, Giannopoulos PF, Pratico D (2018) Brain 5-lipoxygenase over-expression worsens memory, synaptic integrity, and tau pathology in the P301S mice. Aging Cell 17(1). https://doi.org/10.1111/acel.12695

    Article  PubMed Central  CAS  Google Scholar 

  • Wang Y, Zhou K, Li T et al (2017a) Inhibition of autophagy prevents irradiation-induced neural stem and progenitor cell death in the juvenile mouse brain. Cell Death Dis 8(3):e2694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, An P, Xie E et al (2017b) Characterization of ferroptosis in murine models of hemochromatosis. Hepatology 66(2):449–465

    Article  CAS  PubMed  Google Scholar 

  • Wenzel SE, Tyurina YY, Zhao J et al (2017) PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171(3):628–641.e626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Zhi F, Lun W et al (2018) Baicalin inhibits PDGF-BB-induced hepatic stellate cell proliferation, apoptosis, invasion, migration and activation via the miR-3595/ACSL4 axis. Int J Mol Med 41(4):1992–2002

    PubMed  PubMed Central  Google Scholar 

  • Xie Y, Hou W, Song X et al (2016a) Ferroptosis: process and function. Cell Death Differ 23(3):369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Song X, Sun X et al (2016b) Identification of baicalein as a ferroptosis inhibitor by natural product library screening. Biochem Biophys Res Commun 473(4):775–780

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Zhu S, Song X et al (2017) The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep 20(7):1692–1704

    Article  CAS  PubMed  Google Scholar 

  • Yang WS, Kim KJ, Gaschler MM et al (2016) Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA 113(34):E4966–E4975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh CH, Ma KH, Liu PS et al (2015) Baicalein decreases hydrogen peroxide-induced damage to NG108-15 cells via upregulation of Nrf2. J Cell Physiol 230(8):1840–1851

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Guo P, Xie X et al (2017) Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med 21(4):648–657

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Li X, Zhang X et al (2016) Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun 478(3):1338–1343

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Gao Z, Liu J et al (2011) Protective effects of baicalin and quercetin on an iron-overloaded mouse: comparison of liver, kidney and heart tissues. Nat Prod Res 25(12):1150–1160

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Cui W, Li G et al (2012) Baicalein protects against 6-OHDA-induced neurotoxicity through activation of Keap1/Nrf2/HO-1 and involving PKCalpha and PI3K/AKT signaling pathways. J Agric Food Chem 60(33):8171–8182

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mao, X. (2019). Lipoxygenase in Ferroptosis. In: Tang, D. (eds) Ferroptosis in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-26780-3_16

Download citation

Publish with us

Policies and ethics