Skip to main content

Stepping-Stone City: Process-Oriented Infrastructures to Aid Forest Migration in a Changing Climate

  • Chapter
  • First Online:
Nature Driven Urbanism

Part of the book series: Contemporary Urban Design Thinking ((CUDT))

Abstract

Large-scale urbanisation has posed extreme challenges to the biota of the planet by creating non-permeable barriers to movement, especially in the context of global climate change. From a multi-scale perspective, this chapter discusses the importance of landscape connectivity in facilitating ecological processes and develops a conceptual framework of process-oriented green infrastructures. A study in the Greater Manchester area, UK is used to demonstrate the application of this framework to improve urban landscapes for climate-driven forest migration. The result reveals that the migration process at the metropolitan scale can be facilitated by a large number of stepping stones formed by small landscape interventions at site scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert CH, Rayfield B, Dumitru M, Gonzalez A (2017) Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change. Conserv Biol 31:1383–1396

    Article  Google Scholar 

  • Araujo MB, Alagador D, Cabeza M, Nogues-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492

    Article  Google Scholar 

  • Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landsc Ecol 22:1117–1129

    Article  Google Scholar 

  • Benedict MA, McMahon ET (2006) Green infrastructure: linking landscapes and communities. Island Press, Washington

    Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  Google Scholar 

  • Clobert J, Baguette M, Benton TG, Bullock JM (2012) Dispersal ecology and evolution. Oxford University Press, Oxford

    Book  Google Scholar 

  • Colding J (2007) ‘Ecological land-use complementation’ for building resilience in urban ecosystems. Landsc Urban Plan 81:46–55

    Article  Google Scholar 

  • Daly C (2006) Guidelines for assessing the suitability of spatial climate data sets. Int J Climatol 26:707–721

    Article  Google Scholar 

  • De La Pena-Domene M, Minor ES, Howe HF (2016) Restored connectivity facilitates recruitment by an endemic large-seeded tree in a fragmented tropical landscape. Ecology 97:2511–2517

    Article  Google Scholar 

  • Dilt TE, Weisberg PJ, Leitner P, Matocq MD, Inman RD, Nussear KE, Esque TC (2016) Multiscale connectivity and graph theory highlight critical areas for conservation under climate change. Ecol Appl 26:1223–1237

    Article  Google Scholar 

  • Doerr VAJ, Doerr ED, Davies MJ (2010) Does structural connectivity facilitate dispersal of native species in Australia’s fragmented terrestrial landscapes? CEE review. Collaboration for Environmental Evidence

    Google Scholar 

  • Douglas I, Ravetz J (2011) Urban ecology—the bigger picture. In: Niemelä J, Breuste JH, Elmqvist T, Guntenspergen G, James P, McIntyre NE (eds) Urban ecology: patterns, processes, and applications. Oxford University Press, New York

    Google Scholar 

  • Dullinger S, Dendoncker N, Gattringer A, Leitner M, Mang T, Moser D, Mücher CA, Plutzar C, Rounsevell M, Willner W, Zimmermann NE, Hülber K (2015) Modelling the effect of habitat fragmentation on climate-driven migration of European forest understorey plants. Divers Distrib 21:1375–1387

    Article  Google Scholar 

  • Dyderski MK, Paź S, Frelich LE, Jagodziński AM (2018) How much does climate change threaten European forest tree species distributions? Glob Chang Biol 24:1150–1163

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:43024315

    Article  Google Scholar 

  • Forman RT (2014) Urban ecology: science of cities. Cambridge University Press, Cambridge

    Google Scholar 

  • Grassi G, House J, Dentener F, Federici S, Den Elzen M, Penman J (2017) The key role of forests in meeting climate targets requires science for credible mitigation. Nat Clim Chang 7:220–226

    Article  Google Scholar 

  • Hampe A (2011) Plants on the move: the role of seed dispersal and initial population establishment for climate-driven range expansions. Acta Oecol 37:666–673

    Article  Google Scholar 

  • Han Q, Keeffe G (2019) Mapping the flow of forest migration through the city under climate change. Urban Plan 4:139–151

    Article  Google Scholar 

  • Hansson L-A, Åkesson S, Brönmark C, Chapman BB, Hedenström A, Hollander J, Johansson C, Liedvogel M, Lindström Å, Lundberg M (2014) A synthesis of animal movement across scales. In: Hansson L-A, Åkesson S (eds) Animal movement across scales. Oxford University Press, Oxford

    Chapter  Google Scholar 

  • Hejkal J, Buttschardt TK, Klaus VH (2016) Connectivity of public urban grasslands: implications for grassland conservation and restoration in cities. Urban Ecosyst 20:511–519

    Article  Google Scholar 

  • Holling CS (1992) Cross-scale morphology, geometry, and dynamics of ecosystems. Ecol Monogr 62:447–502

    Article  Google Scholar 

  • James Barth B, Ian Fitzgibbon S, Stuart Wilson R (2015) New urban developments that retain more remnant trees have greater bird diversity. Landsc Urban Plan 136:122–129

    Article  Google Scholar 

  • Keeffe GP (2014) Super Suburbia: developing resilience by closing resource cycles in North Belfast. 2nd international conference on urban sustainability and resilience, London

    Google Scholar 

  • Lafortezza R, Davies C, Sanesi G, Konijnendijk CC (2013) Green Infrastructure as a tool to support spatial planning in European urban regions. iForest Biogeosci For 6:102–108

    Article  Google Scholar 

  • Lazarus ED, McGill BJ (2014) Pushing the pace of tree species migration. PLoS One 9:e105380

    Article  Google Scholar 

  • Lovell ST, Taylor JR (2013) Supplying urban ecosystem services through multifunctional green infrastructure in the United States. Landsc Ecol 28:1447–1463

    Article  Google Scholar 

  • Maes J, Thijssen M, Raynal J, Zulian G, Günther S (2019) Enhancing Resilience Of Urban Ecosystems through Green Infrastructure (EnRoute). European Commission

    Google Scholar 

  • Marcotullio PJ, Boyle G (2003) Defining an ecosystem approach to urban management and policy development. United Nations University Institute of Advanced Studies (UNU/IAS, Tokyo

    Google Scholar 

  • Montwe D, Isaac-Renton M, Hamann A, Spiecker H (2018) Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nat Commun:9, 1574

    Google Scholar 

  • Newman P, Jennings I (2012) Cities as sustainable ecosystems: principles and practices. Island Press, Washington

    Google Scholar 

  • Nunez TA, Lawler JJ, McRae BH, Pierce DJ, Krosby MB, Kavanagh DM, Singleton PH, Tewksbury JJ (2013) Connectivity planning to address climate change. Conserv Biol 27:407–416

    Article  Google Scholar 

  • O’Neill RV (1986) A hierarchical concept of ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • Park A, Talbot C (2018) Information underload: ecological complexity, incomplete knowledge, and data deficits create challenges for the assisted migration of forest trees. Bio Science 68:251–263

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  Google Scholar 

  • Pauleit S, Liu L, Ahern J, Kazmierczak A (2011) Multifunctional green infrastructure planning to promote ecological services in the city. In: Niemelä J, Breuste JH, Elmqvist T, Guntenspergen G, James P, McIntyre NE (eds) Urban ecology. Oxford University Press, Oxford

    Google Scholar 

  • Pearson RG, Dawson TP (2005) Long-distance plant dispersal and habitat fragmentation: identifying conservation targets for spatial landscape planning under climate change. Biol Conserv 123:389–401

    Article  Google Scholar 

  • Pena JCDC, Martello F, Ribeiro MC, Armitage RA, Young RJ, Rodriguez M (2017) Street trees reduce the negative effects of urbanization on birds. PLoS One 12:e0174484

    Article  Google Scholar 

  • Petit RJ, Hu FS, Dick CW (2008) Forests of the past: a window to future changes. Science 320:1450–1452

    Article  Google Scholar 

  • Pouzols FM, Moilanen A (2014) A method for building corridors in spatial conservation prioritization. Landsc Ecol 29:789–801

    Article  Google Scholar 

  • Rayfield B, Pelletier D, Dumitru M, Cardille JA, Gonzalez A, Travis J (2016) Multipurpose habitat networks for short-range and long-range connectivity: a new method combining graph and circuit connectivity. Methods Ecol Evol 7:222–231

    Article  Google Scholar 

  • Rehfeldt GE, Crookston NL, Warwell MV, Evans JS (2006) Empirical analyses of plant-climate relationships for the western United States. Int J Plant Sci 167:1123–1150

    Article  Google Scholar 

  • Rehfeldt GE, Worrall JJ, Marchetti SB, Crookston NL (2015) Adapting forest management to climate change using bioclimate models with topographic drivers. For Int J Forest Res 88:528–539

    Google Scholar 

  • Robillard CM, Coristine LE, Soares RN, Kerr JT (2015) Facilitating climate-change-induced range shifts across continental land-use barriers. Conserv Biol 29:1586–1595

    Article  Google Scholar 

  • Saura S, Bodin Ö, Fortin M-J, Frair J (2014) Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J Appl Ecol 51:171–182

    Article  Google Scholar 

  • Scholes RJ, Reyers B, Biggs R, Spierenburg MJ, Duriappah A (2013) Multi-scale and cross-scale assessments of social–ecological systems and their ecosystem services. Curr Opin Environ Sustain 5:16–25

    Article  Google Scholar 

  • Secretariat of the Convention on Biological Diversity (2012) Cities and Biodiversity Outlook. Montreal

    Google Scholar 

  • Staddon P, Lindo Z, Crittenden PD, Gilbert F, Gonzalez A (2010) Connectivity, non-random extinction and ecosystem function in experimental metacommunities. Ecol Lett 13:543–552

    Article  Google Scholar 

  • Tomiolo S, Ward D (2018) Species migrations and range shifts: A synthesis of causes and consequences. Persp Plant Ecol Evol Systemat 33:62–77

    Article  Google Scholar 

  • United Nations (2012) World population prospects: The 2011 revision, highlights and advance tables. In: Department of Economic and Social Affairs, P.D. (Ed.). New York: United Nations Publications

    Google Scholar 

  • Vimal R, Mathevet R, Thompson JD (2012) The changing landscape of ecological networks. J Nat Conserv 20:49–55

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  Google Scholar 

  • Walther GR, Berger S, Sykes MT (2005) An ecological ‘footprint’ of climate change. Proc R Soc B Biol Sci 272:1427–1432

    Article  Google Scholar 

  • Walther GR, Gritti ES, Berger S, Hickler T, Tang Z, Sykes MT (2007) Palms tracking climate change. Glob Ecol Biogeogr 16:801–809

    Article  Google Scholar 

  • Wessely J, Hülber K, Gattringer A, Kuttner M, Moser D, Rabitsch W, Schindler S, Dullinger S, Essl F (2017) Habitat-based conservation strategies cannot compensate for climate-change-induced range loss. Nat Clim Chang 7:823–827

    Article  Google Scholar 

  • Woodall CW, Oswalt CM, Westfall JA, Perry CH, Nelson MD, Finley AO (2009) An indicator of tree migration in forests of the eastern United States. For Ecol Manag 257:1434–1444

    Article  Google Scholar 

  • Wright H (2011) Understanding green infrastructure: the development of a contested concept in England. Local Environ 16:1003–1019

    Article  Google Scholar 

  • Wu J, Li H (2006) Concepts of scale and scaling. In: Wu J, Jones KB, Li H, Loucks OL (eds) Scaling and uncertainty analysis in ecology. Springer, Dordrecht, pp 3–15

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, Q., Keeffe, G. (2020). Stepping-Stone City: Process-Oriented Infrastructures to Aid Forest Migration in a Changing Climate. In: Roggema, R. (eds) Nature Driven Urbanism. Contemporary Urban Design Thinking. Springer, Cham. https://doi.org/10.1007/978-3-030-26717-9_4

Download citation

Publish with us

Policies and ethics