Skip to main content

Pleural Disease

  • Chapter
  • First Online:
Evidence-Based Critical Care

Abstract

Pleural diseases are common in the critically ill patient. These include not only pleural effusions of different etiologies, but also pneumothoraces, hemothoraces and rarely pleural tumors. Pleural effusions, if large, can affect gas exchange, hemodynamic stability and respiratory dynamics (Brogi E, et al. Crit Care 21(1):325, 2017). This chapter is aimed at clinicians on the frontline, with the goal to provide the latest evidence on pleural disease in critically ill patients, outlining the principles of general management and areas of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Brogi E, et al. Thoracic ultrasound for pleural effusion in the intensive care unit: a narrative review from diagnosis to treatment. Crit Care. 2017;21(1):325.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mattison LE, et al. Pleural effusions in the medical ICU: prevalence, causes, and clinical implications. Chest. 1997;111(4):1018–23.

    CAS  PubMed  Google Scholar 

  3. Maslove DM, et al. The diagnosis and management of pleural effusions in the ICU. J Intensive Care Med. 2013;28(1):24–36.

    PubMed  Google Scholar 

  4. Azoulay E. Pleural effusions in the intensive care unit. Curr Opin Pulm Med. 2003;9(4):291–7.

    PubMed  Google Scholar 

  5. Fartoukh M, et al. Clinically documented pleural effusions in medical ICU patients: how useful is routine thoracentesis? Chest. 2002;121(1):178–84.

    PubMed  Google Scholar 

  6. Light RW, et al. Pleural effusions: the diagnostic separation of transudates and exudates. Ann Intern Med. 1972;77(4):507–13.

    CAS  PubMed  Google Scholar 

  7. Yeh JH, et al. Cautious application of pleural N-terminal pro-B-type natriuretic peptide in diagnosis of congestive heart failure pleural effusions among critically ill patients. PLoS One. 2014;9(12):e115301.

    PubMed  PubMed Central  Google Scholar 

  8. Menzies SM, et al. Blood culture bottle culture of pleural fluid in pleural infection. Thorax. 2011;66(8):658–62.

    PubMed  Google Scholar 

  9. Psallidas I, et al. A pilot feasibility study in establishing the role of ultrasound-guided pleural biopsies in pleural infection (The AUDIO Study). Chest. 2018;154(4):766–72.

    PubMed  Google Scholar 

  10. Lichtenstein D, et al. Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology. 2004;100(1):9–15.

    PubMed  Google Scholar 

  11. Lichtenstein D, et al. Feasibility and safety of ultrasound-aided thoracentesis in mechanically ventilated patients. Intensive Care Med. 1999;25(9):955–8.

    CAS  PubMed  Google Scholar 

  12. Koh DM, et al. Transthoracic US of the chest: clinical uses and applications. Radiographics. 2002;22(1):e1.

    PubMed  Google Scholar 

  13. Xirouchaki N, et al. Lung ultrasound in critically ill patients: comparison with bedside chest radiography. Intensive Care Med. 2011;37(9):1488–93.

    PubMed  Google Scholar 

  14. Hallifax RJ, et al. State-of-the-art: radiological investigation of pleural disease. Respir Med. 2017;124:88–99.

    CAS  PubMed  Google Scholar 

  15. Cardenas-Garcia J, Mayo PH. Bedside ultrasonography for the intensivist. Crit Care Clin. 2015;31(1):43–66.

    PubMed  Google Scholar 

  16. Cardenas-Garcia J, Huggins JT. Chapter 11: Lung and pleural procedures. In: Soni N, Arntfield R, Kory P, editors. Point of Care Ultrasound. 2nd Ed. New York: Elsevier, 2019. p. 92–105.

    Google Scholar 

  17. Yang PC, et al. Value of sonography in determining the nature of pleural effusion: analysis of 320 cases. AJR Am J Roentgenol. 1992;159(1):29–33.

    CAS  PubMed  Google Scholar 

  18. Mason AC, et al. Accuracy of CT for the detection of pleural adhesions: correlation with video-assisted thoracoscopic surgery. Chest. 1999;115(2):423–7.

    CAS  PubMed  Google Scholar 

  19. Shen KR, et al. The American Association for Thoracic Surgery consensus guidelines for the management of empyema. J Thorac Cardiovasc Surg. 2017;153(6):e129–46.

    PubMed  Google Scholar 

  20. Vignon P, et al. Quantitative assessment of pleural effusion in critically ill patients by means of ultrasonography. Crit Care Med. 2005;33(8):1757–63.

    PubMed  Google Scholar 

  21. Balik M, et al. Ultrasound estimation of volume of pleural fluid in mechanically ventilated patients. Intensive Care Med. 2006;32(2):318–21.

    CAS  PubMed  Google Scholar 

  22. Remerand F, et al. Multiplane ultrasound approach to quantify pleural effusion at the bedside. Intensive Care Med. 2010;36(4):656–64.

    PubMed  Google Scholar 

  23. Rocco M, et al. Diagnostic accuracy of bedside ultrasonography in the ICU: feasibility of detecting pulmonary effusion and lung contusion in patients on respiratory support after severe blunt thoracic trauma. Acta Anaesthesiol Scand. 2008;52(6):776–84.

    CAS  PubMed  Google Scholar 

  24. Sasse S, et al. The effects of early chest tube placement on empyema resolution. Chest. 1997;111(6):1679–83.

    CAS  PubMed  Google Scholar 

  25. Storm HK, et al. Treatment of pleural empyema secondary to pneumonia: thoracocentesis regimen versus tube drainage. Thorax. 1992;47(10):821–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ferguson AD, et al. The clinical course and management of thoracic empyema. QJM. 1996;89(4):285–9.

    CAS  PubMed  Google Scholar 

  27. Letheulle J, et al. Iterative thoracentesis as first-line treatment of complicated parapneumonic effusion. PLoS One. 2014;9(1):e84788.

    PubMed  PubMed Central  Google Scholar 

  28. Jouneau S, Letheulle J, Desrues B. Repeated therapeutic thoracentesis to manage complicated parapneumonic effusions. Curr Opin Pulm Med. 2015;21(4):387–92.

    PubMed  Google Scholar 

  29. Freixinet Gilart J, et al. Guidelines for the diagnosis and treatment of thoracic traumatism. Arch Bronconeumol. 2011;47(1):41–9.

    PubMed  Google Scholar 

  30. Karmy-Jones R, et al. Timing of urgent thoracotomy for hemorrhage after trauma: a multicenter study. Arch Surg. 2001;136(5):513–8.

    CAS  PubMed  Google Scholar 

  31. Harrison HB, et al. An experimental model of hemothorax autotransfusion: impact on coagulation. Am J Surg. 2014;208(6):1078–82; discussion 1082

    PubMed  Google Scholar 

  32. MacDuff A, Arnold A, Harvey J. Management of spontaneous pneumothorax: British Thoracic Society Pleural Disease Guideline 2010. Thorax. 2010;65(Suppl 2):ii18–31.

    PubMed  Google Scholar 

  33. Karacabey S, et al. Use of ultrasonography for differentiation between bullae and pneumothorax. Emerg Radiol. 2019;26(1):15–9.

    PubMed  Google Scholar 

  34. Rahman NM, et al. The relationship between chest tube size and clinical outcome in pleural infection. Chest. 2010;137(3):536–43.

    PubMed  Google Scholar 

  35. Davies HE, Davies RJ, Davies CW. Management of pleural infection in adults: British Thoracic Society Pleural Disease Guideline 2010. Thorax. 2010;65(Suppl 2):ii41–53.

    PubMed  Google Scholar 

  36. Matin TN, Gleeson FV. Interventional radiology of pleural diseases. Respirology. 2011;16(3):419–29.

    PubMed  Google Scholar 

  37. Millikan JS, et al. Complications of tube thoracostomy for acute trauma. Am J Surg. 1980;140(6):738–41.

    CAS  PubMed  Google Scholar 

  38. Bauman ZM, et al. A prospective study of 7-year experience using percutaneous 14-French pigtail catheters for traumatic hemothorax/hemopneumothorax at a level-1 trauma center: size still does not matter. World J Surg. 2018;42(1):107–13.

    PubMed  Google Scholar 

  39. Kulvatunyou N, et al. Two-year experience of using pigtail catheters to treat traumatic pneumothorax: a changing trend. J Trauma. 2011;71(5):1104–7; discussion 1107

    PubMed  Google Scholar 

  40. Havelock T, et al. Pleural procedures and thoracic ultrasound: British Thoracic Society Pleural Disease Guideline. Thorax. 2010;65(Suppl 2):ii61–76.

    PubMed  Google Scholar 

  41. Patel MD, Joshi SD. Abnormal preprocedural international normalized ratio and platelet counts are not associated with increased bleeding complications after ultrasound-guided thoracentesis. AJR Am J Roentgenol. 2011;197(1):W164–8.

    PubMed  Google Scholar 

  42. Zalt MB, et al. Effect of routine clopidogrel use on bleeding complications after ultrasound-guided thoracentesis. J Bronchol Interv Pulmonol. 2012;19(4):284–7.

    Google Scholar 

  43. Dammert P, Pratter M, Boujaoude Z. Safety of ultrasound-guided small-bore chest tube insertion in patients on clopidogrel. J Bronchol Interv Pulmonol. 2013;20(1):16–20.

    Google Scholar 

  44. Hibbert RM, et al. Safety of ultrasound-guided thoracentesis in patients with abnormal preprocedural coagulation parameters. Chest. 2013;144(2):456–63.

    PubMed  Google Scholar 

  45. Mahmood K, et al. Hemorrhagic complications of thoracentesis and small-bore chest tube placement in patients taking clopidogrel. Ann Am Thorac Soc. 2014;11(1):73–9.

    PubMed  Google Scholar 

  46. Puchalski J. Thoracentesis and the risks for bleeding: a new era. Curr Opin Pulm Med. 2014;20(4):377–84.

    PubMed  Google Scholar 

  47. Salamonsen M, et al. Physician-performed ultrasound can accurately screen for a vulnerable intercostal artery prior to chest drainage procedures. Respirology. 2013;18(6):942–7.

    PubMed  Google Scholar 

  48. Maldonado F. Gravity-Versus Suction-driven Large Volume Thoracentesis (GRAVITAS). 2018 Dec 02 2018]; ClinicalTrials.gov identifier: NCT03591952]. https://clinicaltrials.gov/ct2/show/NCT03591952.

  49. Ray, A.S., et al., Unilateral thoracentesis via manual drainage vs vacuum bottle suction: a randomized trial. In: ATS 2018. San Diego Convention Center; 2018.

    Google Scholar 

  50. French DG, et al. Optimizing postoperative care protocols in thoracic surgery: best evidence and new technology. J Thorac Dis. 2016;8(Suppl 1):S3–S11.

    PubMed  PubMed Central  Google Scholar 

  51. Lang P, et al. Suction on chest drains following lung resection: evidence and practice are not aligned. Eur J Cardiothorac Surg. 2016;49(2):611–6.

    PubMed  Google Scholar 

  52. Porcel JM. Chest tube drainage of the pleural space: a concise review for pulmonologists. Tuberc Respir Dis (Seoul). 2018;81(2):106–15.

    Google Scholar 

  53. Bjerregaard LS, et al. Early chest tube removal after video-assisted thoracic surgery lobectomy with serous fluid production up to 500 ml/day. Eur J Cardiothorac Surg. 2014;45(2):241–6.

    PubMed  Google Scholar 

  54. Zhang Y, et al. A prospective randomized single-blind control study of volume threshold for chest tube removal following lobectomy. World J Surg. 2014;38(1):60–7.

    PubMed  Google Scholar 

  55. Xie HY, et al. A prospective randomized, controlled trial deems a drainage of 300 ml/day safe before removal of the last chest drain after video-assisted thoracoscopic surgery lobectomy. Interact Cardiovasc Thorac Surg. 2015;21(2):200–5.

    PubMed  Google Scholar 

  56. Davis JW, et al. Randomized study of algorithms for discontinuing tube thoracostomy drainage. J Am Coll Surg. 1994;179(5):553–7.

    CAS  PubMed  Google Scholar 

  57. Martino K, et al. Prospective randomized trial of thoracostomy removal algorithms. J Trauma. 1999;46(3):369–71; discussion 372–3

    CAS  PubMed  Google Scholar 

  58. Pompili C, et al. Multicenter international randomized comparison of objective and subjective outcomes between electronic and traditional chest drainage systems. Ann Thorac Surg. 2014;98(2):490–6; discussion 496–7

    PubMed  Google Scholar 

  59. Skouras V, Awdankiewicz A, Light RW. What size parapneumonic effusions should be sampled? Thorax. 2010;65(1):91.

    CAS  PubMed  Google Scholar 

  60. Moffett BK, et al. Computed tomography measurements of parapneumonic effusion indicative of thoracentesis. Eur Respir J. 2011;38(6):1406–11.

    CAS  PubMed  Google Scholar 

  61. Rahman NM, et al. Intrapleural use of tissue plasminogen activator and DNase in pleural infection. N Engl J Med. 2011;365(6):518–26.

    CAS  PubMed  Google Scholar 

  62. Idell S, Rahman NM. Intrapleural fibrinolytic therapy for empyema and pleural loculation: knowns and unknowns. Ann Am Thorac Soc. 2018;15(5):515–7.

    PubMed  PubMed Central  Google Scholar 

  63. Scarci M, et al. EACTS expert consensus statement for surgical management of pleural empyema. Eur J Cardiothorac Surg. 2015;48(5):642–53.

    PubMed  Google Scholar 

  64. Wait MA, et al. A randomized trial of empyema therapy. Chest. 1997;111(6):1548–51.

    CAS  PubMed  Google Scholar 

  65. Petrakis IE, et al. Video-assisted thoracoscopic surgery for thoracic empyema: primarily, or after fibrinolytic therapy failure? Am J Surg. 2004;187(4):471–4.

    PubMed  Google Scholar 

  66. Muhammad MI. Management of complicated parapneumonic effusion and empyema using different treatment modalities. Asian Cardiovasc Thorac Ann. 2012;20(2):177–81.

    PubMed  Google Scholar 

  67. Maskell NA, et al. U.K. controlled trial of intrapleural streptokinase for pleural infection. N Engl J Med. 2005;352(9):865–74.

    CAS  PubMed  Google Scholar 

  68. Razazi K, et al. Effects of pleural effusion drainage on oxygenation, respiratory mechanics, and hemodynamics in mechanically ventilated patients. Ann Am Thorac Soc. 2014;11(7):1018–24.

    PubMed  Google Scholar 

  69. Walden AP, Garrard CS, Salmon J. Sustained effects of thoracocentesis on oxygenation in mechanically ventilated patients. Respirology. 2010;15(6):986–92.

    PubMed  Google Scholar 

  70. Harris A, O’Driscoll BR, Turkington PM. Survey of major complications of intercostal chest drain insertion in the UK. Postgrad Med J. 2010;86(1012):68–72.

    PubMed  Google Scholar 

  71. Light R. Pleural diseases. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 86–127.

    Google Scholar 

  72. Heffner JE, Brown LK, Barbieri CA. Diagnostic value of tests that discriminate between exudative and transudative pleural effusions. Primary Study Investigators. Chest. 1997;111(4):970–80.

    Google Scholar 

  73. Porcel JM, et al. Bayesian analysis using continuous likelihood ratios for identifying pleural exudates. Respir Med. 2006;100(11):1960–5.

    CAS  PubMed  Google Scholar 

  74. Roth BJ, O’Meara TF, Cragun WH. The serum-effusion albumin gradient in the evaluation of pleural effusions. Chest. 1990;98(3):546–9.

    CAS  PubMed  Google Scholar 

  75. Everts RJ, et al. Validity of cultures of fluid collected through drainage catheters versus those obtained by direct aspiration. J Clin Microbiol. 2001;39(1):66–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Huggins JT. Chylothorax and cholesterol pleural effusion. Semin Respir Crit Care Med. 2010;31(6):743–50.

    PubMed  Google Scholar 

  77. Austin A, et al. The Urinothorax: a comprehensive review with case series. Am J Med Sci. 2017;354(1):44–53.

    PubMed  Google Scholar 

  78. Delco F, et al. Spontaneous biliothorax (thoracobilia) following cholecystopleural fistula presenting as an acute respiratory insufficiency. Successful removal of gallstones from the pleural space. Chest. 1994;106(3):961–3.

    CAS  PubMed  Google Scholar 

  79. Porcaro F, et al. Pleural effusion from intrathoracic migration of a ventriculo-peritoneal shunt catheter: pediatric case report and review of the literature. Ital J Pediatr. 2018;44(1):42.

    PubMed  PubMed Central  Google Scholar 

  80. Lew SQ. Hydrothorax: pleural effusion associated with peritoneal dialysis. Perit Dial Int. 2010;30(1):13–8.

    PubMed  Google Scholar 

  81. Balbir-Gurman A, et al. Rheumatoid pleural effusion. Semin Arthritis Rheum. 2006;35(6):368–78.

    PubMed  Google Scholar 

  82. Rooper LM, Ali SZ, Olson MT. A minimum fluid volume of 75 mL is needed to ensure adequacy in a pleural effusion: a retrospective analysis of 2540 cases. Cancer Cytopathol. 2014;122(9):657–65.

    PubMed  Google Scholar 

Download references

Acknowledgement

None

Conflicts of Interest: J.C.G. and F.M.: This work in original and all authors meet the criteria for authorship, including acceptance of responsibility for the scientific content of the manuscript. This paper is not under consideration in any other Journal and all the authors have read and approved the content of the manuscript.

No potential conflict of interest exists with any companies or organizations whose products or services may be discussed in this article. This paper has not been funded by the National Institutes of Health (NIH), the Wellcome Trust or their agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Cárdenas-García .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Isoechoic pleural effusion. This video shows a large isoechoic left sided pleural effusion. Increased ultrasonographic echogenicity of the pleural fluid suggests an exudative process (MOV 4165 kb)

Large pleural effusion. This video shows a simple large anechoic pleural effusion in a patient with fluid overload. Notice the absence of both hematocrit sign and septations (MOV 3800 kb)

Simple right sided pleural effusion with trapped lung. This video shows a large anechoic right sided pleural effusion in a patient with hepatic hydrothorax. Notice the minimal movement of the atelectactic lung. Pleural manometry showed initial negative pleural pressures, confirming non-reexpandable (trapped) lung (MOV 4531 kb)

Small left sided pleural effusion. This video shows a simple anechoic small pleural effusion. These finding in the vast majority of critical care patients is not of major clinical significance and should be monitored (MOV 5196 kb)

Complicated parapneumonic pleural effusion. This video shows a large right sided pleural effusion, with multiple mobile echoic lines (septations) within the pleural space, a finding suggestive of complicated parapneumonic pleural effusion. The pleural fluid analysis confirmed biliothorax (MOV 3806 kb)

Left sided hydropneumothorax. This video shows a moderate size left sided pleural effusion with air leak, in the setting of an esophageal perforation.The multiple mobile hyperechoic foci represent the bubbles of air in the pleural space (MOV 3854 kb)

Pigtail in pleural effusion. This video shows the presence of two parallel curvilinear hyperechoic lines within a large pleural effusion representing the tip of the pigtail (MOV 8998 kb)

Vascular ultrasound, identification of intercostal artery. This video shows a normal intercostal artery located at the lower border of the proximal rib, identified as a pulsatile red area using color Doppler (MOV 4175 kb)

Lung point. This video shows a “lung point” sign, which confirms the presence of pneumothorax. The pleural drainage catheter should be placed cephalad to this area. (MOV 4290 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cárdenas-García, J., Maldonado, F. (2020). Pleural Disease. In: Hyzy, R.C., McSparron, J. (eds) Evidence-Based Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-030-26710-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26710-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26709-4

  • Online ISBN: 978-3-030-26710-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics