Skip to main content

Plant Growth-Promoting Bacterial Life at High Salt Concentrations: Genetic Variability

  • Chapter
  • First Online:
Plant Biotic Interactions
  • 607 Accesses

Abstract

Abiotic stresses are emerging environmental factors limiting agricultural productivity around the world. Among these stresses, salt stress is a serious threat affecting crop production especially in arid and semiarid regions of the world. Development of strategies to ameliorate deleterious effects of salt stress on plants has received considerable attention. In this scenario, the use of salt-tolerant plant growth-promoting microorganisms to enhance salinity resilience in crops is encouraged due to their vital interactions with crop plants. Bacteria are widely used to diminish deleterious impacts of high salinity on crop plants because they possess various direct and indirect plant growth-promoting characteristics. This chapter focuses on the effect of salt stress on plants, plant growth-promoting bacterial survival in saline conditions, and their mechanisms to mitigate salt stress at genetic level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkoby D, Rimon A, Burdak M, Patino-Ruiz M, Calinescu O (2014) NhaA Na+/H+ antiporter mutants that hardly react to the membrane potential. PLoS One 9:e93200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allam NG, Kinany R, El-Refai E, Ali WY (2018) Potential use of beneficial salt tolerant bacteria for improving wheat productivity grown in salinized soil. J Microbiol Res 8:43–53. https://doi.org/10.5923/j.microbiology.20180802.03

    Article  Google Scholar 

  • Azhar E, Van Cleemput O, Verstraete W (1989) The effect of sodium chlorate and nitrapyrin on the nitrification mediated nitrosation process in soils. Plant Soil 116:133–139

    Article  CAS  Google Scholar 

  • Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Wei H, Cao J, Liu R, Wang Y, Zheng C (2007) Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403

    CAS  PubMed  Google Scholar 

  • Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2007) Identification of diazotrophs in the culturable bacterial community associated with roots of Lasiurus sindicus, a perennial grass of Thar Desert, India. Microb Ecol 54:82–90

    Article  PubMed  Google Scholar 

  • Cordovilla MP, Ligero F, Lluch C (1994) The effect of salinity on N fixation and assimilation in Vicia faba. J Exp Bot 45:1483–1488

    Article  CAS  Google Scholar 

  • Das A, Dutta BK, Barooah AK (2013) In vitro solubilization of inorganic phosphate by phosphate solubilizing fungi isolated from tea agroecosystem soil of Barak Valley, Southern Assam. Int J Microbiol Res 4:336–341

    CAS  Google Scholar 

  • DasSarma S, DasSarma P (2012) Halophiles. In: eLS. Wiley, Chichester

    Google Scholar 

  • Dave SR, Desai HB (2006) Microbial diversity at marine salterns near Bhavnagar, Gujarat, India. Curr Sci 90:497–500

    Google Scholar 

  • De la Vega MG, Cejudo FJ, Paneque A (1991) Production of exocellular polysaccharide by Azotobacter chroococcum. Appl Biochem Biotechnol 30:273–284

    Article  PubMed  Google Scholar 

  • Durham DR, Stewart DB, Stellwag EJ (1987) Novel alkaline and heat stable proteases from alkalophilic Bacillus sp. Strain GX 6638. J Bacteriol 169:2262–2768

    Google Scholar 

  • Eisenberg H, Wachtel EJ (1987) Structural studies of halophilic proteins, ribosomes, and organelles of bacteria adapted to extreme salt concentrations. Annu Rev Biophys Biophys Chem 16:69–92

    Article  CAS  PubMed  Google Scholar 

  • El-Shinnawi MM, Omran MS, Abo El-Naga SA (1982) Denitrification in soil saturated with saline water. Appl Microbiol Biotechnol 43:1099–1106

    Google Scholar 

  • Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 163–200

    Chapter  Google Scholar 

  • Etesami H, Alikhani HA, Akbari A (2009) Evaluation of plant growth hormones production (IAA) ability by Iranian soils rhizobial strains and effects of superior strains application on wheat growth indexes. World Appl Sci J 6:1576–1584

    CAS  Google Scholar 

  • Gal SW, Choi YJ (2003) Isolation and characterization of salt tolerance Rhizobia from Acacia root nodules. Agric Chem Biotechnol 46:58–62

    CAS  Google Scholar 

  • Gao H, Bail J, He X, Zhao Q, Lu Q, Wang J (2014) High temperature and salinity enhance soil nitrogen mineralization in a tidal freshwater marsh. PLoS One 9:e95011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerchman Y, Olami Y, Rimon A, Taglicht D, Schuldiner S, Padan E (1993) Histidine-226 is part of the pH sensor of NhaA, a Na+/H+ antiporter in Escherichia coli. PNAS 90:1212–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalkrishnan S, Upadhyaya HD, Vadlamudi S, Humayun P, Vidya MS, Alekhya G, Singh A, Vijyabharathi Bhimineni RK, Seema M, Rathore RO (2012) Plant growth promoting traits of biocontrol potential bacteria isolated from rice rhizosphere. Springerplus 1:71–76

    Article  CAS  Google Scholar 

  • Hasnain S, Taskeen N (1989) Characterization of salt tolerant bacteria isolated from the rhizosphere of Leptochloa fusca and Atritplex rhocodoidaes. Pak J Pharm Sci 2:55–57

    Google Scholar 

  • Hedi A, Sadfi N, Fardeau M-L, Rebib H, Cayol J-L, Ollivier B, Boudabous A (2009) Studies on the biodiversity of halophilic microorganisms isolated from El-Djerid salt lake (Tunisia) under aerobic conditions. Int Microbiol 9:731786

    Google Scholar 

  • Hiramatsu T, Kodama K, Kuroda T, Mizushima T, Tsuchiya T (1998) A putative multisubunit Na+/H+ antiporter from Staphylococcus aureus. J Bacteriol 180:6642–6648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horikoshi K (1971) Production of alkaline enzyme by alkalophilic microorganisms. Part II. Alkaline amylase produced by Bacillus No. A-40-2. Agric Biol Chem 35:1783–1791

    Article  CAS  Google Scholar 

  • Ibekwe AM, Poss JA, Grattan SR, Grieve CM, Suarez D (2010) Bacterial diversity in cucumber (Cucumis sativus) rhizosphere in response to salinity, soil pH, and boron. Soil Biol Biochem 42:567–575

    Article  CAS  Google Scholar 

  • Inaba M, Sakamoto A, Murata N (2001) Functional expression in Escherichia coli of low-affinity and high-affinity Na +(Li+)/H+ antiporters of Synechocystis. J Bacteriol 183:1376–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue H, Nuomi T, Tsuchiya T, Kanzawa H (1995) Essential aspartic acid residues, Asp-133, Asp-163 and Asp-164, in the transmembrane helices of a Na+/H+antiporter (NhaA) from Escherichia coli. FEBS Lett 363:264–268

    Article  CAS  PubMed  Google Scholar 

  • Islam R, Trivedi P, Madhaiyan M, seshadre S, Lee G, Yang J, Kim Y, Kim M, Han G, Chauhan PS, Sa T (2010) Isolation, enumeration, and characterization of diazotrophic bacteria from paddy soil sample under long term fertilizer management experiment. Biol Fertil Soils 46:261–269

    Article  CAS  Google Scholar 

  • Ivey DM, Guffanti AA, Zemsky J (1993) Cloning and characterization of a putative Ca2+/H+ antiporter gene from Escherichia coli upon functional complementation of Na+/H+ antiporter-deficient strains by the overexpressed gene. J Biol Chem 268:11296–11303

    CAS  PubMed  Google Scholar 

  • Kapoor R (2014) Bacterial diversity of salt tolerant nitrogen fixers around the salt mines of Himachal Pradesh. PhD Thesis. CSKHPKV, Palampur (HP)

    Google Scholar 

  • Kapoor R, Gupta MK, kumar N, Kanwar SS (2017) Analysis of nhaA gene from salt tolerant and plant growth promoting Enterobacter ludwigii. Rhizosphere 4:62–69. https://doi.org/10.1016/j.rhisph.2017.07.002

    Article  Google Scholar 

  • Klahn S, Marquardt DM, Rollwitz I, Hagemann M (2009) Expression of the ggpPS gene for glucosylglycerol biosynthesis from Azotobacter vinelandii improves the salt tolerance of Arabidopsis thaliana. J Exp Bot 60(6):1679–1689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kuroda T, Shimamoto T, Inaba K, Tsuda M, Tsuchiya T (1994) Properties and sequence of the NhaA Na1/H1 antiporter of Vibrio parahaemolyticus. J Biochem 116:1030–1038

    Article  CAS  PubMed  Google Scholar 

  • Lippert K, Galinski EA (1992) Enzyme stabilization by ectoine-type compatible solutes: protection against heating, freezing and drying. Appl Microbiol Biotechnol 37:61–65

    Article  CAS  Google Scholar 

  • Loganathan P, Nair S (2004) Swaminathania salitolerans gen. nov. sp. nov., a salt-tolerant nitrogen-fixing and phosphate solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 54:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Majernik A, Gottschalk G, Daniel R (2001) Screening of environmental DNA libraries for the presence of genes conferring Na+(Li+)/H+antiporter activity on Escherichia coli: characterization of the recovered genes and the corresponding gene products. J Bacteriol 183:6645–6653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller KJ, Wood JM (1996) Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 50:101–136

    Article  CAS  PubMed  Google Scholar 

  • Mrkovacki N, Mezei S, Kovacev L (1996) Effect of Azotobacter inoculation on dry matter mass and nitrogen content in the hybrid varieties of sugar beet. A Periodical of Scientific Research on Field and Vegetable Crops 25:107–113

    Google Scholar 

  • Nada AMK, Refaat MH, Abdel-Sabour MS, Hassan AM, Abd El Kader MM (2011) Molecular studies on EctC gene (Ectoine) in some halophilic bacterial isolates. Researcher 3:34–42

    Google Scholar 

  • Nakamura T, Komano Y, Itaya E, Tsukamoto K, Tsuchiya T, Unemoto T (1994) Cloning and sequencing of an Na+/H+ antiporter gene from the marine bacterium Vibrio alginolyticus. Biochim Biophys Acta 1190:465–468

    Article  CAS  PubMed  Google Scholar 

  • Nakbanpote W, Panitlurtumpai N, Sangdee A, Sakulpone N, Sirisom P, Pimthong A (2014) Salt-tolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil: identification and effect on rice under saline conditions. J Plant Interact 9:379–387

    Article  CAS  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  CAS  PubMed  Google Scholar 

  • Nogales J, Campos R, BenAbdelkhalek H, Olivares J, Lluch C, Sanjuan J (2002) Rhizobium tropici genes involved in free-living salt tolerance are required for the establishing of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris. Mol Plant-Microbe Interact 15:225–232

    Article  CAS  PubMed  Google Scholar 

  • Nozaki K, Inaba K, Kuroda T, Tsuda M, Tsuchiya T (1996) Cloning and sequencing of the gene for Na+/H+ antiporter of Vibrio parahaemolyticus. Biochem Biophys Res Commun 222:774–779

    Article  CAS  PubMed  Google Scholar 

  • Nozaki K, Kuroda T, Mizuschima T, Tsuchiya T (1998) A new Na+/H+ antiporter, NhaD, of Vibrio parahaemolyticus. Biochim Biophys Acta 1369:213–220

    Article  CAS  PubMed  Google Scholar 

  • Nuomi TH, Inoue T, Tsuchiya ST, Kanzawa H (1997) Identification and characterization of functional residues in a Na+/H+ antiporter (NhaA) from Escherichia coli by random mutagenesis. J Biochem 121:661–670

    Article  Google Scholar 

  • Padan E (2014) Functional and structural dynamics of NhaA, a prototype for Na+ and H+ antiporters, which are responsible for Na+ and H+ homeostasis in cells. Biochim Biophys Acta 1837:1047–1062

    Article  CAS  PubMed  Google Scholar 

  • Padan E, Venturi M, Gerchman Y, Dover N (2001) Na(+)/H(+) antiporters. Biochim Biophys Acta 1505:144–157

    Article  CAS  PubMed  Google Scholar 

  • Park KH, Lee OM, Jung HI, Jeong JH, Jeon YD, Hwang DY, Lee CY, Son HJ (2010) Rapid solubilization of insoluble phosphate by a novel environmental stress-tolerant Burkholderia vietnamiensis M6 isolated from ginseng rhizospheric soil. Appl Microbiol Biotechnol 86:947–955

    Article  CAS  PubMed  Google Scholar 

  • Plemenitas A, Lenassi M, Konte T, Kejzar A, Zajc J, Gostincar C, Cimerman NG (2014) Adaptation to high salt concentrations in halotolerant/Halophilic fungi: a molecular prospective. Front Microbiol 5:199

    PubMed  PubMed Central  Google Scholar 

  • Pocard JA, Vincent N, Boncompagni E, Smith LT, Poggi MC, DLe R (1997) Molecular characterization of the bet genes encoding glycine betaine synthesis in Sinorhizobium meliloti 102F34. Microbiology 143:1369–1379

    Article  CAS  PubMed  Google Scholar 

  • Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springerplus 2:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosado AS, de Azevedo FS, da Cruz DW, van Elsasand JD, Seldin L (1998) Phenotypic and genetic diversity of Paenibacillus azotofixans strains isolated from the rhizoplane or rhizosphere soil of different grasses. J Appl Microbiol 84:216–226

    Article  Google Scholar 

  • Sahoo RM, Ansari MW, Pradhan M, Dangar TK, Mihanty S, Tuteja M (2014) A novel Azotobacter vinellandii (SRIAz3) functions in salinity stress tolerance in rice. Plant Signal Behav 9:e29377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sevin DC, Sauer U (2014) Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli. Nat Chem Biol 10:266–227

    Article  CAS  PubMed  Google Scholar 

  • Shaheen M, Shah AA, Hameed A, Hasan F (2008) Influence of culture conditions on production and activity of protease from Bacillus subtilis bs1. Pak J Bot 40:2161–2169

    Google Scholar 

  • Sharan A, Shikha DNS, Gaur R (2008) Xanthomonas compestris, a novel stress tolerant, phosphate solubilizing bacterial strain from saline –alkali soils. World J Microbiol Biotechnol 24:753–759

    Article  CAS  Google Scholar 

  • Sivaprakasam S, Dhandapani B, Mahadevan S (2011) Optimization studies on production of a salt-tolerant protease from Pseudomonas aeruginosa strain bc1 and its application on tannery saline wastewater treatment. Braz J Microbiol 42:1506–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan R, Alagawadi AR, Mahesh S, Meena KK, Saxena AK (2012) Characterization of phosphate solubilizing microorganisms from salt-affected soils of India and their effect on growth of sorghum plants Sorghum bicolor (L.). Moench. Ann Microbiol 62:93–105

    Article  CAS  Google Scholar 

  • Strausak D, Waser M, Solioz M (1993) Functional expression of the Enterococcus hirae NaH-antiporter in Escherichia coli. J Biol Chem 268:26334–26337

    CAS  PubMed  Google Scholar 

  • Takashina T, Otozati K, Hamamoto T, Horikoshi K (1994) Isolation of halophilic and halotolerant bacteria from a Japanese salt field and comparison of the partial 16S rRNA gene sequence of an extremely halophilic isolate with those of other extreme halophiles. Biodivers Conserv 3:632–642

    Article  Google Scholar 

  • Tiquia SM, Davis D, Hadid H, Kasparian S, Ismail M, Sahly R, Shim J, Singh S, Murray KS (2007) Halophilic and halotolerant bacteria from river waters and shallow groundwater along the Rouge river of southeastern Michigan. Environ Technol 28:297–230

    Article  CAS  PubMed  Google Scholar 

  • Utsugi J, Inaba K, Kuroda T, Tsuda M, Tsuchiya T (1998) Cloning and sequencing of a novel Na+/H+ antiporter gene from Pseudomonas aeruginosa. Biochim Biophys Acta 1398:330–334

    Article  CAS  PubMed  Google Scholar 

  • Villegas J, Fortin JA (2002) Phosphorous solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO3 − as nitrogen source. Can J Bot 80:571–576

    Article  CAS  Google Scholar 

  • Vimont S, Berche P (2000) NhaA, an Na1/H1 antiporter involved in environmental survival of Vibrio cholera. J Bacteriol 182:2937–2944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vivekananthan R, Ravi M, Ramanathan A, Samiyappan R (2004) Lytic enzymes induced by Pseudomonas fluorescene and other biocontrol organisms mediated defence against the anthracnose pathogen in mango. World J Microbiol Bioltechnol 20:235–244

    Article  CAS  Google Scholar 

  • Watanable N, Ota Y, Minoda Y, Yomada K (1977) Isolation and identification of alkaline lipase producing microorganisms, cultural conditions and some properties of crude enzymes. Agric Biol Chem 41:1353–1358

    Google Scholar 

  • Wei W, Jiang J, Yang SS (2004) Mutagenesis and complementation of relA from Sinorhizobium meliloti 042BM as a salt tolerance involvement gene. Ann Microbiol 54:317–324

    CAS  Google Scholar 

  • Whiting GJ, Gandy EL, Yoch DC (1986) Tight coupling of root-associated nitrogen fixation and plant photosynthesis in the salt marsh grass Spartina alterniflora and carbon dioxide enhancement of nitrogenase activity. Appl Environ Microbiol 52:108–113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zahir ZA, Shah KM, Naveed M, Akhter JM (2010) Substrate dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vignaradiata L. under salt stress conditions. J Microbiol Biotechnol 20:1288–1294

    Article  CAS  PubMed  Google Scholar 

  • Zahran HH, Moharram AM, Mohammad HA (1992) Some ecological and physiological studies on bacteria isolated from salt affected soils of Egypt. J Basic Microbiol 32:405–413

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kapoor, R., Kanwar, S.S. (2019). Plant Growth-Promoting Bacterial Life at High Salt Concentrations: Genetic Variability. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Biotic Interactions . Springer, Cham. https://doi.org/10.1007/978-3-030-26657-8_7

Download citation

Publish with us

Policies and ethics