Skip to main content

Phytoremediation of Electronic Waste: A Mechanistic Overview and Role of Plant Secondary Metabolites

  • Chapter
  • First Online:
Book cover Electronic Waste Pollution

Part of the book series: Soil Biology ((SOILBIOL,volume 57))

Abstract

The escalating economic growth, urbanization and globalization over the last three decades have resulted in the huge production and consumption of electronic devices and appliances all over the world. This has caused an alarming situation of the disposition of electronic waste (e-waste) from the used and discarded electronic products to the environment, which can adversely affect the ecosystem and health of the humans. Management, treatment and recycling of e-waste become crucial to prevent the serious environmental complications and diseases. Among the several methods for treatment of e-waste, phytoremediation is of vital importance, which involves the application of plants and vegetation for the remediation of e-waste contaminants. Phytoremediation technology is a cost-effective green technology known for its optimal results on-site and is considered as environment-friendly and generally socially acceptable. The success of phytoremediation technology is by virtue of some unique plants which possess selective capabilities such as uptake of the metals by roots, translocation through stem and bioaccumulation in the leaves.

In this chapter, we have described in detail the process of phytoremediation as a suitable and sustainable method for remediation of e-waste contaminants including heavy metals and other hazardous substances. Further, a mechanistic overview of the process of phytoremediation technology for treatment of e-waste has been elucidated to highlight the functional role of phytochemicals of plants in contaminants removal through phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agwaramgbo L (2005) Screening plants for antioxidant & phytoremediation potential. Dillard University, New Orleans, LA

    Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Jin R, Gill RA, Mwamba TM, Zhang N, Islam F, Ali S, Zhou W (2018) Beryllium stress-induced modifications in antioxidant machinery and plant ultrastructure in the seedlings of black and yellow seeded oilseed rape. Biomed Res Int. https://doi.org/10.1155/2018/1615968

    Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Babu BR, Parande AK, Basha CA (2007) Electrical and electronic waste: a global environmental problem. Waste Manag Res 25(4):307–318

    Article  CAS  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161(5):839–851

    Article  CAS  Google Scholar 

  • Brandl H, Bosshard R, Wegmann M (2001) Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 59(2–3):319–326

    Article  CAS  Google Scholar 

  • Bücker-Neto L, Paiva ALS, Machado RD, Arenhart RA, Margis-Pinheiro M (2017) Interactions between plant hormones and heavy metals responses. Genet Mol Biol 40(1):373–386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caruso JA, Heitkemper DT, B’Hymer C (2001) An evaluation of extraction techniques for arsenic species from freeze-dried apple samples. Analyst 126(2):136–140

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Liu X, Brookes PC, Xu J (2015) Opportunities for phytoremediation and bioindication of arsenic contaminated water using a submerged aquatic plant: Vallisneria natans (Lour.) Hara. Int J Phytoremediation 17(3):249–255

    Article  CAS  PubMed  Google Scholar 

  • Cho-Ruk K, Kurukote J, Supprung P, Vetayasuporn S (2006) Perennial plants in the phytoremediation of lead-contaminated soils. Biotechnology 5(1):1–4

    CAS  Google Scholar 

  • Choudhary DK, Varma A (2016) Microbial-mediated induced systemic resistance in plants. Springer, New York

    Book  Google Scholar 

  • Coscione AR, Berton RS (2009) Barium extraction potential by mustard, sunflower and castor bean. Sci Agric 66(1):59–63

    Article  CAS  Google Scholar 

  • Dhillon S, Dhillon K (2009) Phytoremediation of selenium-contaminated soils: the efficiency of different cropping systems. Soil Use Manag 25(4):441–453

    Article  Google Scholar 

  • Dı́az J, Bernal A, Pomar F, Merino F (2001) Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification. Plant Sci 161(1):179–188

    Article  Google Scholar 

  • Dinis TC, Madeira VM, Almeida LM (1994) Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys 315(1):161–169

    Article  CAS  PubMed  Google Scholar 

  • Donot F, Fontana A, Baccou J, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87(2):951–962

    Article  CAS  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J. https://doi.org/10.1155/2015/756120

    Article  Google Scholar 

  • Favas PJ, Pratas J, Varun M, D’Souza R, Paul MS (2014) Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native flora. In: Environmental risk assessment of soil contamination. InTech

    Google Scholar 

  • Feng R, Wei C, Tu S, Tang S, Wu F (2011) Simultaneous hyperaccumulation of arsenic and antimony in Cretan brake fern: evidence of plant uptake and subcellular distributions. Microchem J 97(1):38–43

    Article  CAS  Google Scholar 

  • Feng R, Wang X, Wei C, Tu S (2015) The accumulation and subcellular distribution of arsenic and antimony in four fern plants. Int J Phytoremediation 17(4):348–354

    Article  CAS  PubMed  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100(9):1738–1750

    Article  PubMed  Google Scholar 

  • Gardea-Torresdey J, Tiemann K, Polette L, Chianelli R, Pingitore N, Mackay W (1999) Phytoremediation of heavy metals with creosote plants. Google Patents

    Google Scholar 

  • Guo J, Xu L, Su Y, Wang H, Gao S, Xu J, Que Y (2013) ScMT2-1-3, a metallothionein gene of sugarcane, plays an important role in the regulation of heavy metal tolerance/accumulation. Biomed Res Int 2013. https://doi.org/10.1155/2013/904769

    Google Scholar 

  • Gupta D, Huang H, Corpas F (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20(4):2150–2161

    Article  CAS  Google Scholar 

  • Hajiani NJ, Ghaderian SM, Karimi N, Schat H (2015) A comparative study of antimony accumulation in plants growing in two mining areas in Iran, Moghanlo, and Patyar. Environ Sci Pollut Res 22(21):16542–16553

    Article  CAS  Google Scholar 

  • Heacock M, Kelly CB, Asante KA, Birnbaum LS, Bergman ÅL, Bruné M-N, Buka I, Carpenter DO, Chen A, Huo X (2016) E-waste and harm to vulnerable populations: a growing global problem. Environ Health Perspect 124(5):550

    Article  CAS  PubMed  Google Scholar 

  • Heitkemper DT, Vela NP, Stewart KR, Westphal CS (2001) Determination of total and speciated arsenic in rice by ion chromatography and inductively coupled plasma mass spectrometry. J Anal At Spectrom 16(4):299–306

    Article  CAS  Google Scholar 

  • Helgesen H, Larsen EH (1998) Bioavailability and speciation of arsenic in carrots grown in contaminated soil. Analyst 123(5):791–796

    Article  CAS  PubMed  Google Scholar 

  • Intawongse M, Dean JR (2006) Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Addit Contam 23(1):36–48

    Article  CAS  PubMed  Google Scholar 

  • Islam MS, Ueno Y, Sikder MT, Kurasaki M (2013) Phytofiltration of arsenic and cadmium from the water environment using Micranthemum umbrosum (JF Gmel) SF Blake as a hyperaccumulator. Int J Phytoremediation 15(10):1010–1021

    Article  CAS  PubMed  Google Scholar 

  • Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75(4):339–364

    Article  Google Scholar 

  • Jutsz AM, Gnida A (2015) Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals. Arch Environ Protection 41(4):104–114

    Article  Google Scholar 

  • Kim YJ, Kim JH, Lee CE, Mok YG, Choi JS, Shin HS, Hwang S (2006) Expression of yeast transcriptional activator MSN1 promotes accumulation of chromium and sulfur by enhancing sulfate transporter level in plants. FEBS Lett 580(1):206–210

    Article  CAS  PubMed  Google Scholar 

  • Kofoworola O (2007) Recovery and recycling practices in municipal solid waste management in Lagos, Nigeria. Waste Manag 27(9):1139–1143

    Article  CAS  PubMed  Google Scholar 

  • Krumova E, Kostadinova N, Miteva-Staleva J, Gryshko V, Angelova M (2016) Cellular response to Cu-and Zn-induced oxidative stress in Aspergillus fumigatus isolated from polluted soils in Bulgaria. CLEAN Soil Air Water 44(6):657–666

    Article  CAS  Google Scholar 

  • Lamb DT, Matanitobua VP, Palanisami T, Megharaj M, Naidu R (2013) Bioavailability of barium to plants and invertebrates in soils contaminated by barite. Environ Sci Technol 47(9):4670–4676

    Article  CAS  PubMed  Google Scholar 

  • Laurent A, Bakas I, Clavreul J, Bernstad A, Niero M, Gentil E, Hauschild MZ, Christensen TH (2014) Review of LCA studies of solid waste management systems–part I: lessons learned and perspectives. Waste Manag 34(3):573–588

    Article  PubMed  Google Scholar 

  • Lavid N, Schwartz A, Yarden O, Tel-Or E (2001) The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta 212(3):323–331

    Article  CAS  PubMed  Google Scholar 

  • Leung AO, Duzgoren-Aydin NS, Cheung K, Wong MH (2008) Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China. Environ Sci Technol 42(7):2674–2680

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Richardson JB, Bricka RM, Niu X, Yang H, Li L, Jimenez A (2009) Leaching of heavy metals from E-waste in simulated landfill columns. Waste Manag 29(7):2147–2150

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Jiang W, Liu D (2003) Accumulation of copper by roots, hypocotyls, cotyledons and leaves of sunflower (Helianthus annuus L.). Bioresour Technol 86(2):151–155

    Article  CAS  PubMed  Google Scholar 

  • Liu W-X, Shen L-F, Liu J-W, Wang Y-W, Li S-R (2007) Uptake of toxic heavy metals by rice (Oryza sativa L.) cultivated in the agricultural soil near Zhengzhou City, People’s Republic of China. Bull Environ Contam Toxicol 79(2):209–213

    Article  CAS  PubMed  Google Scholar 

  • Lone MI, He Z-l, Stoffella PJ, Yang X-E (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9(3):210–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Chuken UJ (2012) Hydroponics and environmental clean-up. In: Hydroponics—a standard methodology for plant biological researches. InTech

    Google Scholar 

  • Ma Y, Prasad M, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258

    Article  CAS  PubMed  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15(4):523–530

    CAS  Google Scholar 

  • Montes-Holguin MO, Peralta-Videa JR, Meitzner G, Martinez-Martinez A, de la Rosa G, Castillo-Michel HA, Gardea-Torresdey JL (2006) Biochemical and spectroscopic studies of the response of Convolvulus arvensis L. to chromium (III) and chromium (VI) stress. Environ Toxicol Chem 25(1):220–226

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal mine waste. Appl Ecol Environ Res 8(3):207–222

    Google Scholar 

  • Müller K, Daus B, Mattusch J, Vetterlein D, Merbach I, Wennrich R (2013) Impact of arsenic on uptake and bio-accumulation of antimony by arsenic hyperaccumulator Pteris vittata. Environ Pollut 174:128–133

    Article  PubMed  CAS  Google Scholar 

  • Muranyi A, Ködöböcz L (2008) Heavy metal uptake by plants in different phytoremediation treatments. Cereal Res Commun 36:387–390

    Article  CAS  Google Scholar 

  • Muszynska E, Hanus-Fajerska E (2015) Why are heavy metal hyperaccumulating plants so amazing? BioTechnologia 96(4). https://doi.org/10.5114/bta.2015.57730

    Article  CAS  Google Scholar 

  • Muszyńska B, Rojowski J, Dobosz K, Opoka W (2015) Biological and physico-chemical properties of thallium. Medicina Internacia Revuo 26(105):180–185

    Google Scholar 

  • Ogoko E (2015) Accumulation of heavy metal in soil and their transfer to leafy vegetables with phytoremediation potential. Am J Chem 5(5):125–131

    CAS  Google Scholar 

  • Ogunmayowa OT, Dzantor K, Adeleke E (2015) Coupling bio/phytoremediation with switchgrass to biofuel feedstock production in mixed-contaminant soils. PhD Thesis

    Google Scholar 

  • Ogunseitan OA, Schoenung JM, Saphores J-DM, Shapiro AA (2009) The electronics revolution: from e-wonderland to e-wasteland. Science 326(5953):670–671

    Article  CAS  PubMed  Google Scholar 

  • Parker DR, Feist LJ, Varvel TW, Thomason DN, Zhang Y (2003) Selenium phytoremediation potential of Stanleya pinnata. Plant Soil 249(1):157–165

    Article  CAS  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci 97(9):4956–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41(8–9):1665–1677

    Article  CAS  PubMed  Google Scholar 

  • Petruzzelli G, Pedron F, Rosellini I, Tassi E, Gorini F, Barbafieri M (2012) Integrating bioremediation and phytoremediation to clean up polychlorinated biphenyls contaminated soils. World Acad Sci Eng Technol 6(6):357–360

    Google Scholar 

  • Rajkumar M, Sandhya S, Prasad M, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Robinson BH (2009) E-waste: an assessment of global production and environmental impacts. Sci Total Environ 408(2):183–191

    Article  CAS  PubMed  Google Scholar 

  • Saba H, Jyoti P, Neha S (2013) Mycorrhizae and phytochelators as remedy in heavy metal contaminated land remediation. Intl Res J Environ Sci 2(1):74–78

    Google Scholar 

  • Sampaio Junior J, Amaral N, Zonta E, Magalhães MO (2015) Barium and sodium in sunflower plants cultivated in soil treated with wastes of drilling of oil well. Rev Bras Eng Agríc Ambient 19(11):1100–1106

    Article  Google Scholar 

  • Sas-Nowosielska A, Galimska-Stypa R, Kucharski R, Zielonka U, Małkowski E, Gray L (2008) Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil. Environ Monit Assess 137(1–3):101–109

    Article  CAS  PubMed  Google Scholar 

  • Schiavon M, Pilon-Smits EA (2017) Selenium biofortification and phytoremediation phytotechnologies: a review. J Environ Qual 46(1):10–19

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012. https://doi.org/10.1155/2012/217037

    Article  CAS  Google Scholar 

  • Silva P, Matos M (2016) Assessment of the impact of aluminum on germination, early growth and free proline content in Lactuca sativa L. Ecotoxicol Environ Saf 131:151–156

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Prasad SM, Singh S, Singh M (2016) Phytoremediation potential of weed plants’ oxidative biomarker and antioxidant responses. Chem Ecol 32(7):684–706

    Article  CAS  Google Scholar 

  • Sinha S (2007) Downside of the digital revolution. Toxics Link 28

    Google Scholar 

  • Skinner K, Wright N, Porter-Goff E (2007) Mercury uptake and accumulation by four species of aquatic plants. Environ Pollut 145(1):234–237

    Article  CAS  PubMed  Google Scholar 

  • Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van Laere A, Vangronsveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43(5):437–444

    Article  CAS  PubMed  Google Scholar 

  • Srivastava M, Ma LQ, Cotruvo JA (2005) Uptake and distribution of selenium in different fern species. Int J Phytoremediation 7(1):33–42

    Article  CAS  PubMed  Google Scholar 

  • Subhashini V, Swamy A (2014) Phytoremediation of metal (Pb, Ni, Zn, Cd and Cr) contaminated soils using Canna indica. Curr World Environ 9(3):780

    Article  Google Scholar 

  • Tak HI, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. In: Reviews of environmental contamination and toxicology, vol 223. Springer, New York, pp 33–52

    Google Scholar 

  • Tangahu BV, Abdullah S, Rozaimah S, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011. https://doi.org/10.1155/2011/939161

    Article  Google Scholar 

  • Tsydenova O, Bengtsson M (2011) Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manag 31(1):45–58

    Article  CAS  PubMed  Google Scholar 

  • Vamerali T, Bandiera M, Coletto L, Zanetti F, Dickinson NM, Mosca G (2009) Phytoremediation trials on metal-and arsenic-contaminated pyrite wastes (Torviscosa, Italy). Environ Pollut 157(3):887–894

    Article  CAS  PubMed  Google Scholar 

  • Van der Ent A, Baker AJ, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362(1–2):319–334

    Google Scholar 

  • Van Ginneken L, Meers E, Guisson R, Ruttens A, Elst K, Tack FM, Vangronsveld J, Diels L, Dejonghe W (2007) Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. J Environ Eng Landsc Manag 15(4):227–236

    Article  Google Scholar 

  • Watson C, Pulford I, Riddell-Black D (2003) Screening of willow species for resistance to heavy metals: comparison of performance in a hydroponics system and field trials. Int J Phytoremediation 5(4):351–365

    Article  CAS  PubMed  Google Scholar 

  • Xiezhi Y (2008) Assessment and bioremediation of soils contaminated by uncontrolled recycling of electronic-waste at Guiyu, SE China. Hong Kong Baptist University, Hong Kong

    Google Scholar 

  • Yu J, Williams E, Ju M, Shao C (2010) Managing e-waste in China: policies, pilot projects and alternative approaches. Resour Conserv Recycl 54(11):991–999

    Article  Google Scholar 

  • Zhang X, Lin A-J, Zhao F-J, Xu G-Z, Duan G-L, Zhu Y-G (2008) Arsenic accumulation by the aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides. Environ Pollut 156(3):1149–1155

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mubarak Ali Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, M.A., Ullah, N., Khan, T., Jamal, M., Shah, N.A., Ali, H. (2019). Phytoremediation of Electronic Waste: A Mechanistic Overview and Role of Plant Secondary Metabolites. In: Hashmi, M., Varma, A. (eds) Electronic Waste Pollution. Soil Biology, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-030-26615-8_16

Download citation

Publish with us

Policies and ethics