Skip to main content

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 1741 Accesses

Abstract

Cheap nonmetal fraction (epoxy resin, glass fiber, ceramics, etc.) accounts for 70% of e-waste/WPCB. It contains most of the hazardous brominated flame retardants. This chapter covers the direct and chemical recycling of NMF from WPCBs. Chemical recycling consists of combustion (smelting/incineration), pyrolysis, and depolymerization processes by using supercritical fluids, hydrogenolytic degradation, plasma treatment, hydrothermal methods, and gasification process. The purpose of thermal treatment of e-waste is elimination of plastic/epoxy resin components. Details of pyrolysis and hydrothermal depolymerization of WPCBs with different solvents are presented in this chapter.

“By recycling you can change tomorrow, today”

Anonymous

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo J, Cao B, Guo J, Xu Z (2008) A plate produced by nonmetallic materials of pulverized waste printed circuit boards. Environ Sci Technol 42:5267–5271. https://doi.org/10.1021/es800825u

    Article  CAS  Google Scholar 

  2. Guo J, Guo J, Cao B, Tang Y, Xu Z (2009) Manufacturing process of reproduction plate by nonmetallic materials reclaimed from pulverized printed circuit boards. J Hazard Mater 163:1019–1025. https://doi.org/10.1016/j.jhazmat.2008.07.099

    Article  CAS  Google Scholar 

  3. Yokoyama S, Iji M (1995) Recycling of thermosetting plastic waste from electronic component production processes. In: Proceedings of the 1995 IEEE International Symposium on Electronics and the Environment, ISEE, pp 132–137

    Google Scholar 

  4. Mou P, Xiang DDG (2007) Products made from nonmetallic materials reclaimed from waste printed circuit boards. Tsinghua Sci Technol 12:276–283. https://doi.org/10.1016/S1007-0214(07)70041-X

    Article  Google Scholar 

  5. Ban BC, Song JY, Lim JY, Wang SK, An KG, Kim DS (2005) Studies on the reuse of waste printed circuit board as an additive for cement mortar. J Environ Sci Health A Tox Hazard Subst Environ Eng 40:645–656

    Article  CAS  Google Scholar 

  6. Guo J, Li J, Rao Q, Xu Z (2008b) Phenolic molding compound filled with nonmetals of waste PCBs. Environ Sci Technol 42:624–628. https://doi.org/10.1021/es0712930

    Article  CAS  Google Scholar 

  7. Guo J, Rao Q, Xu Z (2008c) Application of glass-nonmetals of waste printed circuit boards to produce phenolic molding compound. J Hazard Mater 153:728–734. https://doi.org/10.1016/j.jhazmat.2007.09.029

    Article  CAS  Google Scholar 

  8. Zheng Y, Shen Z, Cai C, Ma S, Xing Y (2009) The reuse of nonmetals recycled from waste printed circuit boards as reinforcing fillers in the polypropylene composites. J Hazard Mater 163:600–606. https://doi.org/10.1016/j.jhazmat.2008.07.008

    Article  CAS  Google Scholar 

  9. Niu X, Li Y (2007) Treatment of waste printed wire boards in electronic waste for safe disposal. J Hazard Mater 145:410–416. https://doi.org/10.1016/j.jhazmat.2006.11.039

    Article  CAS  Google Scholar 

  10. Lu MX, Zhou CH, Liu WL (2000) The study of recovering waste printed circuit board by mechanical method. Tech Equip Environ Pollut Control 10:30–35

    CAS  Google Scholar 

  11. Pimenta S, Pinho ST (2011) Recycling carbon fiber reinforced polymers for structural applications: technology review and market outlook. Waste Manag 31:378–392. https://doi.org/10.1016/j.wasman.2010.09.019

    Article  CAS  Google Scholar 

  12. Hall WJ, Williams PT (2007) Separation and recovery of materials from scrap printed circuit boards. Resour Conserv Recycl 51(3):691–709. https://doi.org/10.1016/j.resconrec.2006.11.010

    Article  Google Scholar 

  13. Zhou Y, Qiu K (2010) A new technology for recycling materials from waste printed circuit boards. J Hazard Mater 175(1–3):823–828. https://doi.org/10.1016/j.jhazmat.2009.10.083.15

    Article  CAS  Google Scholar 

  14. Yamawaki T (2003) The gasification recycling technology of plastics WEEE containing brominated flame retardants. Fire Mater 27(6):315–319. https://doi.org/10.1002/fam.833

    Article  CAS  Google Scholar 

  15. Luda MP (2011) Recycling of printed circuit boards. In: Kumar S (ed) Integrated waste management, vol II. InTech, Rijeka. https://cdn.intechopen.com/pdfs-wm/18491.pdf

    Google Scholar 

  16. Luda MP, Balabanovich AI, Zanetti M, Guaratto D (2007) Thermal decomposition of fire retardant brominated epoxy resins cured with different nitrogen containing hardeners. Polym Degrad Stab 92(6):1088–1100. ISSN: 01413910

    Article  CAS  Google Scholar 

  17. Luda MP, Balabanovich AI, Zanetti M (2010) Pyrolysis of fire retardant anhydride cured epoxy resins. J Anal Appl Pyrolysis 88(1):39–52. https://doi.org/10.1016/j.jaap.2010.02.008

    Article  CAS  Google Scholar 

  18. Quan C, Li A, Gao N (2009) Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Manag 29:2253–2360. https://doi.org/10.1016/j.wasman.2009.03.020

    Article  CAS  Google Scholar 

  19. Ke YH, Yang ET, Liu X, Liu CL, Dong WS (2013) Preparation of porous carbons from nonmetallic fractions of waste printed circuit boards by chemical and physical activation. Xinxing Tan Cailiao/New Carbon Mater 28:108–114. https://doi.org/10.1016/S1872-5805(13)60069-4

    Article  CAS  Google Scholar 

  20. Rajagopal RR, Aravinda LS, Rajarao R, Bhat BR, Sahajwalla V (2016) Activated carbon derived from non-metallic printed circuit board waste for supercapacitor application. Electrochim Acta 211:488–498. https://doi.org/10.1016/j.electacta.2016.06.077

    Article  CAS  Google Scholar 

  21. Burke A (2007) R&D considerations for the performance and application of electrochemical capacitors. Electrochim Acta 53:1083–1091. https://doi.org/10.1016/j.electacta.2007.01.011

    Article  CAS  Google Scholar 

  22. Hadi P, Barford J, McKay G (2013) Toxic heavy metal capture using a novel electronic waste-based material-mechanism, modeling and comparison. Environ Sci Technol 47:8248–8255. https://doi.org/10.1021/es4001664

    Article  CAS  Google Scholar 

  23. Xu M, Hadi P, Chen G, McKay G (2014) Removal of cadmium ions from wastewater using innovative electronic waste-derived material. J Hazard Mater 273:118–123. https://doi.org/10.1016/j.jhazmat.2014.03.037

    Article  CAS  Google Scholar 

  24. Tohka A, Lehto H (2005) Mechanical and thermal recycling of waste from electric and electronic equipment, Helsinki University of Technology, Department of Mechanical Engineering. Energy Engineering and Environmental Protection Publications, Espoo

    Google Scholar 

  25. Siddique R, Khatib J, Kaur T (2008) Use of recycled plastic in concrete: a review. Waste Manag 28(10):1835–1852. https://doi.org/10.1016/j.wasman.2007.09.011

    Article  CAS  Google Scholar 

  26. Panyakapo P, Panyakapo M (2008) Reuse of thermosetting plastic waste for lightweight concrete. Waste Manag 28(9):1581–1588. https://doi.org/10.1016/j.wasman.2007.08.006

    Article  CAS  Google Scholar 

  27. Xiu FR, Qi Y, Zhang FS (2013) Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process. Waste Manag 33:1251–1257. https://doi.org/10.1016/j.wasman.2013.01.023

    Article  CAS  Google Scholar 

  28. Xiu FR, Zhang FS (2010) Materials recovery from waste printed circuit boards by supercritical methanol. J Hazard Mater 178:628–634. https://doi.org/10.1016/j.jhazmat.2010.01.131

    Article  CAS  Google Scholar 

  29. Cui H, Anderson CG (2016) Literature review of hydrometallurgical recycling of printed circuit boards (PCBs). J Adv Chem Eng 6(1):142. https://doi.org/10.4172/2090-4568.1000142

    Article  CAS  Google Scholar 

  30. Xing M, Zhang F (2012) A novel process for detoxification of BERs in waste PCBs. Procedia Environ Sci 16:491–494. https://doi.org/10.1016/j.proenv.2012.10.067

    Article  CAS  Google Scholar 

  31. Yıldırır E, Onwudili JA, Williams PT (2015) Chemical recycling of PCB waste by depolimerization in sub and supercritical solvents. Waste Biomass Valorization 6:959–965. https://doi.org/10.1007/s12649-015-9426-8

    Article  Google Scholar 

  32. Braun D, von Gentzkow W, Rudolf AP (2001) Hydrogenolytic degradation of thermosets. Polym Degrad Stab 74:25–32. https://doi.org/10.1016/S0141-3910(01)00035-0

    Article  CAS  Google Scholar 

  33. Xu J, Tazawa N et al (2018) Simultaneous recovery of high-purity copper and polyvinyl chloride from thin electric cables by plasticizer extraction and ball milling. RSC Adv 8:6893–6903. https://doi.org/10.1039/C8RA00301G

    Article  CAS  Google Scholar 

  34. Huang K, Guo J, Xu Z (2009) Recycling of waste printed circuit boards: a review of current technologies and treatment status in China. J Hazard Mater 164:399–406. https://doi.org/10.1016/j.jhazmat.2008.08.051

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaya, M. (2019). Recycling of NMF from WPCBs. In: Electronic Waste and Printed Circuit Board Recycling Technologies. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-26593-9_9

Download citation

Publish with us

Policies and ethics