Skip to main content

The Neurobiological Strands of Developmental Dyslexia: What We Know and What We Don’t Know

  • Chapter
  • First Online:
Reading Development and Difficulties

Abstract

This chapter focuses on the definition of dyslexia as “neurobiological in origin” as prescribed by the International Dyslexia Association and National Institute of Child Health and Human Development. The chapter examines the notion of dyslexia as a specific learning disability and challenges the presumption that impairments are specific or limited to reading behavior based on behavioral and neurobiological evidence. The authors argue that the convergence of evidence from neuroimaging studies leading up to the adoption of the definition of dyslexia in 2003 is belied by a larger set of more divergent findings suggesting a variety of etiologies of the disorder. Moreover, the argument for a central phonological deficit behaviorally with neurobiological impairments in regions associated with receptive language processing (roughly surrounding Wernicke’s area) may be just as much an outcome determined by multiple sources of lower-level impairments as it is a cause of dyslexia. Familial risk factors of the disorder are reflected in brain development, and behavior and evidence of genetic markers suggest a certain degree of heritability. However, clear evidence for environmental mediators and successful interventions yields a complex dynamic of how nature and nurture interact in the emergence of the disorder. Thus, this likely equifinality of the disorder requires that large datasets of neurobiological and behavioral data be culled to uncover endophenotypic subtypes or biotypes of dyslexia that may reflect differential responses to intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Despite nominal disputes in the literature, we use the terms developmental dyslexia, dyslexia, reading impairment, reading disorder, and reading disability interchangeably in this chapter.

  2. 2.

    For the purposes of this chapter, and to avoid the potential confusion of anatomical labels, we will use more commonly recognized terminology, including Wernicke’s area, and Broca’s area, as well as VWFA. However, it should be noted that these labels which refer to a region’s function are sources of debate as the putative structure–function relationships have become less well defined.

  3. 3.

    A gene deletion or mutation is when DNA or part of a chromosome does not replicate when the gene is passed on.

References

  • Ahissar, M. (2007). Dyslexia and the anchoring-deficit hypothesis. Trends in Cognitive Sciences, 11(11), 458–465. https://doi.org/10.1016/j.tics.2007.08.015.

    Article  PubMed  Google Scholar 

  • Alexander-Passe, N. (2006). How dyslexic teenagers cope: An investigation of self-esteem, coping and depression. Dyslexia, 12(4), 256–275. https://doi.org/10.1002/dys.318.

    Article  PubMed  Google Scholar 

  • Asbury, K., Wachs, T. D., & Plomin, R. (2005). Environmental moderators of genetic influence on verbal and nonverbal abilities in early childhood. Intelligence, 33(6), 643–661. https://doi.org/10.1016/j.intell.2005.03.008.

    Article  Google Scholar 

  • Aylward, E. H., Richards, T. L., Berninger, V. W., Nagy, W. E., Field, K. M., Grimme, A. C., et al. (2003). Instructional treatment associated with changes in brain activation in children with dyslexia. Neurology, 61(2), 212–219.

    Article  PubMed  Google Scholar 

  • Banai, K., Hornickel, J., Skoe, E., Nicol, T., Zecker, S., & Kraus, N. (2009). Reading and subcortical auditory function. Cerebral Cortex, 19(11), 2699–2707. https://doi.org/10.1093/cercor/bhp024.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beaulieu, C., Plewes, C., Paulson, L. A., Roy, D., Snook, L., Concha, L., et al. (2005). Imaging brain connectivity in children with diverse reading ability. NeuroImage, 25(4), 1266–1271. https://doi.org/10.1016/j.neuroimage.2004.12.053.

    Article  PubMed  Google Scholar 

  • Ben-Yehudah, G., & Ahissar, M. (2004). Sequential spatial frequency discrimination is consistently impaired among adult dyslexics. Vision Research, 44(10), 1047–1063. https://doi.org/10.1016/j.visres.2003.12.001.

    Article  PubMed  Google Scholar 

  • Black, J. M., Tanaka, H., Stanley, L., Nagamine, M., Zakerani, N., Thurston, A., … Hoeft, F. (2012). Maternal history of reading difficulty is associated with reduced language-related gray matter in beginning readers. NeuroImage, 59(3), 3021–3032. https://doi.org/10.1016/j.neuroimage.2011.10.024.

    Article  PubMed  Google Scholar 

  • Bolger, D. J., Hornickel, J., Cone, N. E., Burman, D. D., & Booth, J. R. (2008a). Neural correlates of orthographic and phonological consistency effects in children. Human Brain Mapping, 29(12), 1416–1429.

    Article  PubMed  Google Scholar 

  • Bolger, D. J., Minas, J., Burman, D. D., & Booth, J. R. (2008b). Differential effects of orthographic and phonological consistency in cortex for children with and without reading impairment. Neuropsychologia, 46(14), 3210–3224. https://doi.org/10.1016/j.neuropsychologia.2008.07.024.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolger, D. J., Perfetti, C. A., & Schneider, W. (2005). Cross-cultural effect on the brain revisited: Universal structures plus writing system variation. Human Brain Mapping, 25, 92–104. https://doi.org/10.1002/hbm.20124.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brambati, S. M., Termine, C., Ruffino, M., Stella, G., Fazio, F., Cappa, S. F., et al. (2004). Regional reductions of gray matter volume in familial dyslexia. Neurology, 63(4), 742–745. https://doi.org/10.1212/01.WNL.0000134673.95020.EE.

    Article  PubMed  Google Scholar 

  • Brown, W., Eliez, S., Menon, V., Rumsey, J., White, C., & Reiss, A. (2001). Preliminary evidence of widespread morphological variations of the brain in dyslexia. Neurology, 56(6), 781–783. https://doi.org/10.1212/wnl.56.6.781.

    Article  PubMed  Google Scholar 

  • Brunswick, N., McCrory, E., Price, C. J., Frith, C. D., & Frith, U. (1999). Explicit and implicit processing of words and pseudowords by adult developmental dyslexics. A search for Wernicke’s Wortschatz? Brain, 122(10), 1901–1917. https://doi.org/10.1093/brain/122.10.1901.

    Article  PubMed  Google Scholar 

  • Cao, F., Bitan, T., & Booth, J. R. (2008). Effective brain connectivity in children with reading difficulties during phonological processing. Brain and Language, 107(2), 91–101.

    Google Scholar 

  • Cao, F., Bitan, T., Chou, T. L., Burman, D. D., & Booth, J. R. (2006). Deficient orthographic and phonological representations in children with dyslexia revealed by brain activation patterns. Journal of Child Psychology and Psychiatry and Allied Disciplines, 47(10), 1041–1050. https://doi.org/10.1111/j.1469-7610.2006.01684.x

    Article  PubMed  Google Scholar 

  • Catani, M., & Mesulam, M. (2008). The arcuate fasciculus and the disconnection theme in language and aphasia: History and current state. Cortex, 44(8), 953–961. https://doi.org/10.1016/j.cortex.2008.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Centanni, T., Booker, A. B., Chen, F., Sloan, A. M., Carraway, R. S., Rennaker, R. L., … Kilgard, M. P. (2016). Knockdown of dyslexia-gene DCDC2 interferes with speech sound discrimination in continuous streams. Journal of Neuroscience, 36(17), 4895–4906. https://doi.org/10.1523/jneurosci.4202-15.2016.

    Article  PubMed  Google Scholar 

  • Centanni, T., Chen, F., Booker, A. M., Engineer, C. T., Sloan, A. M., Rennaker, R. L., … Kilgard, M. P. (2014). Speech sound processing deficits and training-induced neural plasticity in rats with dyslexia gene knockdown. PLoS ONE, 9(5). https://doi.org/10.1371/journal.pone.0098439.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran, B., Hornickel, J., Skoe, E., Nicol, T., & Kraus, N. (2009). Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: Implications for developmental dyslexia. Neuron, 64(3), 311–319. https://doi.org/10.1016/j.neuron.2009.10.006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cicchini, G. M., Marino, C., Mascheretti, S., Perani, D., & Morrone, M. C. (2015). Strong motion deficits in dyslexia associated with DCDC2 gene alteration. Journal of Neuroscience, 35(21), 8059–8064.

    Article  PubMed  Google Scholar 

  • Clark, K. A., Helland, T., Specht, K., Narr, K. L., Manis, F. R., Toga, A. W., et al. (2014). Neuroanatomical precursors of dyslexia identified from pre-reading through to age 11. Brain, 137(12), 3136–3141. https://doi.org/10.1093/brain/awu229.

    Article  PubMed  PubMed Central  Google Scholar 

  • Connor, C. M., Piasta, S. B., Fishman, B., Glasney, S., Schatschneider, C., Crowe, E., … Morrison, F. J. (2009). Individualizing student instruction precisely: Effects of child × instruction interactions on first graders’ literacy development. Child Development, 80(1), 77–100. https://doi.org/10.1111/j.1467-8624.2008.01247.x.

    Article  Google Scholar 

  • Darki, F., Peyrard-Janvid, M., Matsson, H., Kere, J., & Klingberg, T. (2012). Three dyslexia susceptibility genes, DYX1C1, DCDC2, and KIAA0319, affect temporo-parietal white matter structure. Biological Psychiatry, 72(8), 671–676. https://doi.org/10.1016/j.biopsych.2012.05.008.

    Article  PubMed  Google Scholar 

  • Davis, N., Barquero, L., Compton, D. L., Fuchs, L. S., Fuchs, D., Gore, J. C., et al. (2011). Functional correlates of children’s responsiveness to intervention. Developmental Neuropsychology, 36(3), 288–301.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dawson, G., Finley, C., Phillips, S., & Galpert, L. (1986). Hemispheric specialization and the language abilities of autistic children. Society for Research in Child Development, 57(6), 1440–1453.

    Article  Google Scholar 

  • Debska, A., Łuniewska, M., Chyl, K., Banaszkiewicz, A., Zelechowska, A., Wypych, M., … Jednoróg, K. (2016). Neural basis of phonological awareness in beginning readers with familial risk of dyslexia-Results from shallow orthography. NeuroImage, 132, 406–416. https://doi.org/10.1016/j.neuroimage.2016.02.063.

    Article  PubMed  Google Scholar 

  • Dejerine, M., & Symes, W. L. (1893). Some recent papers on neurophysiology. Brain, 16(1–2), 318–320.

    Article  Google Scholar 

  • Demb, J. B., Boynton, G. M., Best, M., & Heeger, D. J. (1998). Psychophysical evidence for a magnocellular pathway deficit in dyslexia. Vision Research, 38(11), 1555–1559. https://doi.org/10.1016/s0042-6989(98)00075-3.

    Article  PubMed  Google Scholar 

  • Desroches, A. S., Cone, N. E., Bolger, D. J., Bitan, T., Burman, D. D., & Booth, J. R. (2010). Children with reading difficulties show differences in brain regions associated with orthographic processing during spoken language processing. Brain Research, 1356, 73–84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deutsch, G. K., Dougherty, R. F., Bammer, R., Siok, W. T., Gabrieli, J. D. E., & Wandell, B. (2005). Children’s reading performance is correlated with white matter structure measured by diffusion tensor imaging. Cortex, 41(3), 354–363. https://doi.org/10.1016/s0010-9452(08)70272-7.

    Article  PubMed  Google Scholar 

  • Drysdale, A. T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y., … & Schatzberg, A. F. (2017). Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature medicine, 23(1), 28.

    Google Scholar 

  • Eckert, M. A., Vaden, Jr., K. I., Gebregziabher, M., & Dyslexia Data Consortium. (2018). Reading profiles in multi-site data with missingness. Frontiers in Psychology, 9, 644.

    Google Scholar 

  • Eden, G. F., Jones, K. M., Cappell, K., Gareau, L., Wood, F. B., Zeffiro, T. A., … & Flowers, D. L. (2004). Neural changes following remediation in adult developmental dyslexia. Neuron, 44(3), 411–422.

    Google Scholar 

  • Eden, G. F., VanMeter, J. W., Rumsey, J. M., Maisog, J. M., Woods, R. P., & Zeffiro, T. A. (1996). Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature, 382, 66–69. https://doi.org/10.1038/382066a0.

    Article  PubMed  Google Scholar 

  • Elliott, J. G., & Gibbs, S. (2008). Does dyslexia exist? Journal of Philosophy of Education, 42(3–4), 475–491. https://doi.org/10.1111/j.1467-9752.2008.00653.x.

    Article  Google Scholar 

  • Facoetti, A., Corradi, N., Ruffino, M., Gori, S., & Zorzi, M. (2010a). Visual spatial attention and speech segmentation are both impaired in preschoolers at familial risk for developmental dyslexia. Dyslexia, 16(3), 226–239. https://doi.org/10.1002/dys.413.

    Article  PubMed  Google Scholar 

  • Facoetti, A., & Molteni, M. (2001). The gradient of visual attention in developmental dyslexia. Neuropsychologia, 39(4), 352–357. https://doi.org/10.1016/S0028-3932(00)00138-X.

    Article  PubMed  Google Scholar 

  • Facoetti, A., Pagnoni, G., Turatto, M., Marzola, V., & Mascetti, G. (2000). Visual-spatial attention in developmental dyslexia. Cortex, 36(1), 109–123. https://doi.org/10.1016/s0010-9452(08)70840-2.

    Article  PubMed  Google Scholar 

  • Facoetti, A., Trussardi, A. N., Ruffino, M., Lorusso, M. L., Cattaneo, C., Galli, R., … Zorzi, M. (2010). Multisensory spatial attention deficits are predictive of phonological decoding skills in developmental dyslexia. Journal of Cognitive Neuroscience, 22(5), 1011–1025. https://doi.org/10.1162/jocn.2009.21232.

    Article  PubMed  Google Scholar 

  • Facoetti, A., Zorzi, M., Cestnick, L., Lorusso, M. L., Molteni, M., Paganoni, P., … Mascetti, G. G. (2006). The relationship between visuo-spatial attention and nonword reading in developmental dyslexia. Cognitive Neuropsychology, 23(6), 841–855. https://doi.org/10.1080/02643290500483090.

    Article  PubMed  Google Scholar 

  • Fletcher, J. M. (2005). Predicting math outcomes: Reading predictors and comorbidity. Journal of Learning Disabilities, 38(4), 308–312.

    Article  PubMed  Google Scholar 

  • Fletcher, J. M., Lyon, G. R., Fuchs, L. S., & Barnes, M. A. (2018). Learning disabilities: From identification to intervention. Guilford Publications.

    Google Scholar 

  • Fletcher, J. M., & Morris, R. (1986). Classification of disabled learners: Beyond exclusionary definitions. Handbook of cognitive, social, and neuropsychological aspects of learning disabilities, 1, 55–80.

    Google Scholar 

  • Francis, D. J., Stuebing, K. K., Shaywitz, S. E., Shaywitz, B. A., & Fletcher, J. M. (1996). Developmental lag versus deficit models of reading disability: A longitudinal individual growth curves analysis. Journal of Educational Psychology, 88(1), 3–17.

    Article  Google Scholar 

  • Fuchs, L. S., & Fuchs, D. (2002). Mathematical problem-solving profiles of students with mathematics disabilities with and without comorbid reading disabilities. Journal of learning disabilities, 35(6), 564–574.

    Article  Google Scholar 

  • Gaab, N., Gabrieli, J. D. E., Deutsch, G. K., Tallal, P., & Temple, E. (2007). Neural correlates of rapid auditory processing are disrupted in children with developmental dyslexia and ameliorated with training: An fMRI study. Restorative Neurology and Neuroscience, 25(3–4), 295–310.

    PubMed  Google Scholar 

  • Gabrieli, J. D. E. (2009). Dyslexia: A new synergy between education and cognitive neuroscience. Science (New York, NY), 325(5938), 280–283. https://doi.org/10.1126/science.1171999.

    Article  Google Scholar 

  • Galaburda, A. M., & Kemper, T. L. (1979). Cytoarchitectonic abnormalities in developmental dyslexia: A case study. Annals of Neurology, 6(2), 94–100. https://doi.org/10.1002/ana.410060203.

    Article  PubMed  Google Scholar 

  • Galaburda, A. M., & Livingstone, M. (1993). Evidence for a magnocellular defect in developmental dyslexia. Annals of the New York Academy of Sciences, 682(1), 70–82. https://doi.org/10.1111/j.1749-6632.1993.tb22960.x.

    Article  PubMed  Google Scholar 

  • Galaburda, A. M., LoTurco, J., Ramus, F., Fitch, R. H., & Rosen, G. D. (2006). From genes to behavior in developmental dyslexia. Nature Neuroscience, 9(10), 1213–1217. https://doi.org/10.1038/nn1772.

    Article  PubMed  Google Scholar 

  • Galaburda, A. M., Sanides, F., & Geschwind, N. (1978). Human brain. Cytoarchitectonic left-right asymmetries in the temporal speech region. Archives of Neurology, 35(12), 812–817.

    Google Scholar 

  • Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F., & Geschwind, N. (1985). Developmental dyslexia: Four consecutive patients with cortical anomalies. Annals of Neurology, 18(2), 222–233. https://doi.org/10.1002/ana.410180210.

    Article  PubMed  Google Scholar 

  • Gathercole, S. E., Alloway, T. P., Willis, C., & Adams, A. M. (2006). Working memory in children with reading disabilities. Journal of Experimental Child Psychology, 93(3), 265–281.

    Article  PubMed  Google Scholar 

  • Georgiewa, P., Rzanny, R., Hopf, J. M., Knab, R., Glauche, V., Kaiser, W. A., & Blanz, B. (1999). fMRI during word processing in dyslexic and normal reading children. Neuroreport, 10(16), 3459–65 (10599862).

    Google Scholar 

  • Geschwind, N. (1970). The organization of language and the brain. Science, 170(961), 940–944. https://doi.org/10.1126/science.170.3961.940.

    Article  PubMed  Google Scholar 

  • Geschwind, N. (1974). Selected papers on language and the brain (Vol. 16). Dordrecht: Springer, Netherlands. https://doi.org/10.1007/978-94-010-2093-0.

    Book  Google Scholar 

  • Gialluisi, A., Newbury, D. F., Wilcutt, E. G., Consortium, T. S. L. I., & Luciano, M. (2014). Genome-wide screening for DNA variants associated with reading and language traits. Genes, Brain and Behavior, 13(7), 686–701. https://doi.org/10.1111/gbb.12158.

    Article  Google Scholar 

  • Graves, W. W., Desai, R., Humphries, C., Seidenberg, M. S., & Binder, J. R. (2010). Neural systems for reading aloud: a multiparametric approach. Cerebral Cortex, 20(8), 1799–1815. https://doi.org/10.1093/cercor/bhp245.

    Article  PubMed  Google Scholar 

  • Grigorenko, E. L. (2004). Genetic bases of developmental dyslexia: A capsule review of heritability estimates. Enfance, 56(3), 273–288. https://doi.org/10.3917/enf.563.0273.

    Article  Google Scholar 

  • Grigorenko, E. L. (2005). A conservative meta-analysis of linkage and linkage-association studies of developmental dyslexia. Scientific Studies of Reading, 9(3), 285–316. https://doi.org/10.1207/s1532799xssr0903.

    Article  Google Scholar 

  • Grigorenko, E. L., Naples, A., Chang, J., Romano, C., Ngorosho, D., Kungulilo, S., … Bundy, D. (2007). Back to Africa: Tracing dyslexia genes in East Africa. Reading and Writing: An Interdisciplinary Journal, 20(1–2), 27–49. https://doi.org/10.1007/s11145-006-9017-y.

    Article  Google Scholar 

  • Guttorm, T., Leppanen, P. H. T., Hamalainen, J. A., Eklund, K. M., & Lyytinen, H. J. (2010). Newborn event-related potentials predict poorer pre-reading skills in children at risk for dyslexia. Journal of Learning Disabilities, 43(5), 391–401. https://doi.org/10.1177/0022219409345005.

    Article  PubMed  Google Scholar 

  • Guttorm, T., Leppanen, P., Poikkeus, A., Eklund, K., Lyytinen, P., & Lyytinen, H. (2005). Brain event-related potentials (ERPs) measured at birth predict later language development in children with and without familial risk for dyslexia. Cortex, 41(3), 291–303. https://doi.org/10.1016/S0010-9452(08)70267-3.

    Article  PubMed  Google Scholar 

  • Guttorm, T., Leppanen, P. H. T., Richardson, U., & Lyytinen, H. (2001). Event-related potentials and consonant differentiation in newborns with familial risk for dyslexia. Journal of Learning Disabilities, 34(6), 534–544. https://doi.org/10.1177/002221940103400606.

    Article  PubMed  Google Scholar 

  • Hämäläinen, J. A., Salminen, H. K., & Leppänen, P. H. T. (2013). Basic auditory processing deficits in dyslexia: Systematic review of the behavioral and event-related potential/ field evidence. Journal of Learning Disabilities, 46(5), 413–427. https://doi.org/10.1177/0022219411436213.

    Article  PubMed  Google Scholar 

  • Hampshire, A., Highfield, R. R., Parkin, B. L., & Owen, A. M. (2012). Fractionating human intelligence. Neuron, 76(6), 1225–1237.

    Article  PubMed  Google Scholar 

  • Harlaar, N., Butcher, L. M., Meaburn, E., Sham, P., Craig, I. W., & Plomin, R. (2005). A behavioural genomic analysis of DNA markers associated with general cognitive ability in 7-year-olds. Journal of Child Psychology and Psychiatry and Allied Disciplines, 46(10), 1097–1107. https://doi.org/10.1111/j.1469-7610.2005.01515.x.

    Article  Google Scholar 

  • Hart, S. A., Soden, B., Johnson, W., Schatschneider, C., & Taylor, J. (2013). Expanding the environment: Gene × school-level SES interaction on reading comprehension. Journal of Child Psychology and Psychiatry, 54(10), 1047–1055. https://doi.org/10.1111/jcpp.12083.

    Article  PubMed  Google Scholar 

  • Heibert, E. H., & Taylor, B. M. (2000). Beginning reading instruction: Research on early interventions. In M. L. Kamil, P. B. Mosenthal, P. David Pearson, & R. Barr (Eds.), Handbook of reading research, Vol. III (pp. 455–482). Mahwah NJ: Lawrence Erlbaum.

    Google Scholar 

  • Heim, S., Grande, M., Pape-Neumann, J., van Ermingen, M., Meffert, E., Grabowska, A., … Amunts, K. (2010). Interaction of phonological awareness and “magnocellular” processing during normal and dyslexic reading: behavioural and fMRI investigations. Dyslexia, 16(3), 258–282. https://doi.org/10.1002/dys.

  • Hoeft, F., Hernandez, A., McMillon, G., Taylor-Hill, H., Martindale, J. L., Meyler, A., … Gabrieli, J. D. E. (2006). Neural basis of dyslexia: A comparison between dyslexic and nondyslexic children equated for reading ability. Journal of Neuroscience, 26(42), 10700–10708. https://doi.org/10.1523/jneurosci.4931-05.2006.

    Article  PubMed  Google Scholar 

  • Hoeft, F., McCandliss, B. D., Black, J. M., Gantman, A., Zakerani, N., Hulme, C., … & Gabrieli, J. D. (2011). Neural systems predicting long-term outcome in dyslexia. Proceedings of the National Academy of Sciences, 108(1), 361–366.

    Google Scholar 

  • Hornickel, J., & Kraus, N. (2013). Unstable representation of sound: A biological marker of dyslexia. Journal of Neuroscience, 33(8), 3500–3504. https://doi.org/10.1523/JNEUROSCI.4205-12.2013.

    Article  PubMed  Google Scholar 

  • Hosseini, S. M. H., Black, J. M., Soriano, T., Bugescu, N., Martinez, R., Raman, M. M., … Hoeft, F. (2013). Topological properties of large-scale structural brain networks in children with familial risk for reading difficulties. NeuroImage, 71, 260–274. https://doi.org/10.1016/j.neuroimage.2013.01.013.

    Article  PubMed  Google Scholar 

  • Hus, Y. (2001). Early reading for low-ses minority language children: An attempt to “catch them before they fall”. Folia Phoniatrica et Logopaedica, 53(3), 173–182.

    Article  PubMed  Google Scholar 

  • Hutzler, F., Kronbichler, M., Jacobs, A. M., & Wimmer, H. (2006). Perhaps correlational but not causal: No effect of dyslexic readers’ magnocellular system on their eye movements during reading. Neuropsychologia, 44(4), 637–648. https://doi.org/10.1016/j.neuropsychologia.2005.06.006.

    Article  PubMed  Google Scholar 

  • Im, K., Raschle, N. M., Smith, S. A., Ellen Grant, P., & Gaab, N. (2016). Atypical sulcal pattern in children with developmental dyslexia and at-risk kindergarteners. Cerebral Cortex, 26(3), 1138–1148. https://doi.org/10.1093/cercor/bhu305.

    Article  PubMed  Google Scholar 

  • Johannes, S., Kussmaul, C. L., Münte, T. F., & Mangun, G. R. (1996). Developmental dyslexia: Passive visual stimulation provides no evidence for a magnocellular processing defect. Neuropsychologia, 34(11), 1123–1127. https://doi.org/10.1016/0028-3932(96)00026-7.

    Article  PubMed  Google Scholar 

  • Karmiloff-Smith, A. (2009). Nativism versus neuroconstructivism: Rethinking the study of developmental disorders. Developmental Psychology, 45(1), 56–63. https://doi.org/10.1037/a0014506.

    Article  PubMed  Google Scholar 

  • Keller, T. A., & Just, M. A. (2009). Altering cortical connectivity: Remediation-induced changes in the white matter of poor readers. Neuron, 64(5), 624–631.

    Google Scholar 

  • Krafnick, A. J., Flowers, D. L., Luetje, M. M., Napoliello, E. M., & Eden, G. F. (2014). An investigation into the origin of anatomical differences in dyslexia. The Journal of Neuroscience, 34(3), 901–908. https://doi.org/10.1523/JNEUROSCI.2092-13.2013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kronbichler, M., Hutzler, F., Staffen, W., Mair, A., Ladurner, G., & Wimmer, H. (2006). Evidence for a dysfunction of left posterior reading areas in German dyslexic readers. Neuropsychologia, 44(10), 1822–1832. https://doi.org/10.1016/j.neuropsychologia.2006.03.010.

    Article  PubMed  Google Scholar 

  • Kronbichler, M., Wimmer, H., Staffen, W., Hutzler, F., Mair, A., & Ladurner, G. (2008). Developmental dyslexia: Gray matter abnormalities in the occipitotemporal cortex. Human Brain Mapping, 29(5), 613–625. https://doi.org/10.1002/hbm.20425.

    Article  PubMed  Google Scholar 

  • Langer, N., Peysakhovich, B., Zuk, J., Drottar, M., Sliva, D. D., Smith, S., … Gaab, N. (2015). White matter alterations in infants at risk for developmental dyslexia. Cerebral Cortex, 27(2):1027–1036. https://doi.org/10.1093/cercor/bhv281.

  • Leppänen, P. H. T., Hämäläinen, J. A., Guttorm, T., Eklund, K. M., Salminen, H. K., Tanskanen, A., … Lyytinen, H. J. (2012). Infant brain responses associated with reading-related skills before school and at school age. Neurophysiologie Clinique/Clinical Neurophysiology, 42(1–2), 35–41. https://doi.org/10.1016/j.neucli.2011.08.005.

    Article  PubMed  Google Scholar 

  • Leppänen, P. H. T., Hämäläinen, J. A., Salminen, H. K., Eklund, K. M., Guttorm, T. K., Lohvansuu, K., … Lyytinen, H. (2010). Newborn brain event-related potentials revealing atypical processing of sound frequency and the subsequent association with later literacy skills in children with familial dyslexia. Cortex, 46(10), 1362–1376. https://doi.org/10.1016/j.cortex.2010.06.003.

    Article  PubMed  Google Scholar 

  • Lilienfeld, S. O., & Treadway, M. T. (2016). Clashing diagnostic approaches: DSM-ICD versus RDoC. Annual Review of Clinical Psychology, 12, 435–463.

    Article  PubMed  PubMed Central  Google Scholar 

  • Linkersdörfer, J., Jurcoane, A., Lindberg, S., Kaiser, J., Hasslehorn, M., Fiebach, C. J., et al. (2014). The association between gray matter volume and reading proficiency: A longitudinal study of beginning readers. Journal of Cognitive Neuroscience, 27(2), 308–318. https://doi.org/10.1162/jocn.

    Article  Google Scholar 

  • Linkersdörfer, J., Lonnemann, J., Lindberg, S., Hasselhorn, M., & Fiebach, C. J. (2012). Grey matter alterations co-localize with functional abnormalities in developmental dyslexia: An ALE meta-analysis. PLoS ONE, 7(8). https://doi.org/10.1371/journal.pone.0043122.

    Article  PubMed  PubMed Central  Google Scholar 

  • Livingstone, M. S., & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240(4853), 740–749. https://doi.org/10.1126/science.3283936.

    Article  PubMed  Google Scholar 

  • Logan, J. A., Hart, S. A., Cutting, L., Deater-Deckard, K., Schatschneider, C., & Petrill, S. (2014). Reading development in young children: Genetic and environmental influences. Child Development, 84(6), 2131–2144. https://doi.org/10.1111/cdev.12104.

    Article  Google Scholar 

  • Lyon, G. R., Fletcher, J. M., Shaywitz, S. E., Shaywitz, B. A., Torgesen, J. K., Wood, F. B., … & Olson, R. (2001). Rethinking learning disabilities. Rethinking Special Education for a New Century, 259–287.

    Google Scholar 

  • Lyon, G. R., Shaywitz, S. E., & Shaywitz, B. A. (2003). A definition of dyslexia. Annals of Dyslexia, 53(1), 1–14. https://doi.org/10.1007/s11881-003-0001-9.

    Article  Google Scholar 

  • Lyytinen, H., Guttorm, T., Huttunen, T., Hamalainen, J., Leppanen, P., & Vesterinen, M. (2005). Psychophysiology of developmental dyslexia: a review of findings including studies of children at risk for dyslexia. Journal of Neurolinguistics, 18(2), 167–195. https://doi.org/10.1016/j.jneuroling.2004.11.001.

    Article  Google Scholar 

  • Maisog, J. M., Einbinder, E. R., Flowers, D. L., Turkeltaub, P. E., & Eden, G. F. (2008). A meta-analysis of functional neuroimaging studies of dyslexia. Annals of the New York Academy of Sciences, 1145(1), 237–259.

    Article  PubMed  Google Scholar 

  • Marinković, K. (2004). Spatiotemporal dynamics of word processing in the human cortex. The Neuroscientist, 10(2), 142–152. https://doi.org/10.1177/1073858403261018.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marinković, K., Dhond, R. P., Dale, A. M., Glessner, M., Carr, V., & Halgren, E. (2003). Spatiotemporal dynamics of modality-specific and supramodal word processing. Neuron, 38(3), 487–497.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCrory, E. J., Mechelli, A., Frith, U., & Price, C. J. (2005). More than words: A common neural basis for reading and naming deficits in developmental dyslexia? Brain, 128(2), 261–267. https://doi.org/10.1093/brain/awh340.

    Article  PubMed  Google Scholar 

  • McDonald, C. R., Thesen, T., Carlson, C., Blumberg, M., Girard, H. M., Trongnetrpunya, A., … Halgren, E. (2010). Multimodal imaging of repetition priming: Using fMRI, MEG, and intracranial EEG to reveal spatiotemporal profiles of word processing. NeuroImage, 53(2), 707–717. https://doi.org/10.1016/j.neuroimage.2010.06.069.

    Article  PubMed  Google Scholar 

  • McGuinness, C., McGuinness, D., & McGuinness, G. (1996). Phono-graphix TM: A new method for remediating reading difficulties. Annals of Dyslexia, 46(1), 73–96.

    Article  PubMed  Google Scholar 

  • Meng, H., Powers, N. R., Tang, L., Cope, N. A., Zhang, P. X., Fuleihan, R., … & Gruen, J. R. (2011). A dyslexia-associated variant in DCDC2 changes gene expression. Behavior Genetics, 41(1), 58–66.

    Google Scholar 

  • Meng, H., Smith, S. D., Hager, K., Held, M., Liu, J., Olson, R. K., … Gruen, J. R. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Academy of Sciences, 102(47), 17053–8. https://doi.org/10.1073/pnas.0508591102.

    Article  Google Scholar 

  • Meyler, A., Keller, T. A., Cherkassky, V. L., Gabrieli, J. D. E., & Just, M. A. (2008). Modifying the brain activation of poor readers during sentence comprehension with extended remedial instruction: A longitudinal study of neuroplasticity. Neuropsychologia, 46(10), 2580–2592.

    Article  PubMed  PubMed Central  Google Scholar 

  • Milne, E., & Grafman, J. (2001). Ventromedial prefrontal cortex lesions in humans eliminate implicit gender stereotyping. The Journal of Neuroscience, 21(12), RC150.

    Google Scholar 

  • Milne, R. D., Syngeniotis, A., Jackson, G., & Corballis, M. C. (2002). Mixed lateralization of phonological assembly in developmental dyslexia. Neurocase, 8(3), 205–209. https://doi.org/10.1093/neucas/8.3.205.

    Article  PubMed  Google Scholar 

  • Molfese, D. L. (2000). Predicting dyslexia at 8 years of age using neonatal brain responses. Brain and Language, 72(3), 238–245. https://doi.org/10.1006/brln.2000.2287.

    Article  PubMed  Google Scholar 

  • Molfese, D. L., & Molfese, V. J. (1985). Electrophysiological indices of auditory discrimination in newborn infants: The bases for predicting later language development? Infant Behavior and Development, 9(2), 197–211.

    Article  Google Scholar 

  • Molfese, D. L., & Molfese, V. J. (1997). Discrimination of language skills at five years of age using event-related potentials recorded at birth. Developmental Neuropsychology, 13(2), 135–156. https://doi.org/10.1080/87565649709540674.

    Article  Google Scholar 

  • Molfese, D. L., Molfese, V. J., & Kelly, S. (2001). The use of brain electrophysiology techniques to study language: A basic guide for the beginning consumer of electrophysiology information. Learning Disability Quarterly, 24(3), 177. https://doi.org/10.2307/1511242.

    Article  Google Scholar 

  • Morris, R. D., Stuebing, K. K., Fletcher, J. M., Shaywitz, S. E., Lyon, G. R., Shankweiler, D. P., … Shaywitz, B. A. (1998). Subtypes of reading disability: Variability around a phonological core. Journal of Educational Psychology, 90(3), 347–373. https://doi.org/10.1037/0022-0663.90.3.347.

    Article  Google Scholar 

  • Myers, C., Vandermosten, M., Farris, R., Hancock, R., Gimenez, P., Black, J., … Hoeft, F. (2014). White matter morphometric changes uniquely predict children’s reading acquisition. Psychological Science, 25(10), 1870–1883. https://doi.org/10.1177/0956797614544511.

    Article  PubMed  Google Scholar 

  • National Reading Panel (US), National Institute of Child Health, & Human Development (US). (2000). Report of the national reading panel: Teaching children to read: An evidence-based assessment of the scientific research literature on reading and its implications for reading instruction: Reports of the subgroups. National Institute of Child Health and Human Development, National Institutes of Health.

    Google Scholar 

  • Neville, H. J., Coffey, S. A., Holcomb, P. J., & Tallal, P. (1993). The neurobiology of sensory and language processing in language-impaired children. Journal of Cognitive Neuroscience, 5(2), 235–253. https://doi.org/10.1162/jocn.1993.5.2.235.

    Article  PubMed  Google Scholar 

  • Noble, K. G., McCandliss, B. D., & Farah, M. J. (2007). Socioeconomic gradients predict individual differences in neurocognitive abilities. Developmental Science, 10(4), 464–480. https://doi.org/10.1111/j.1467-7687.2007.00600.x.

    Article  PubMed  Google Scholar 

  • Odegard, T. N., Ring, J., Smith, S., Biggan, J., & Black, J. (2008). Differentiating the neural response to intervention in children with developmental dyslexia. Annals of dyslexia, 58(1), 1.

    Article  PubMed  Google Scholar 

  • Ozernov-Palchik, O., & Gaab, N. (2016). Tackling the “dyslexia paradox”: Reading brain and behavior for early markers of developmental dyslexia. Wiley Interdisciplinary Reviews: Cognitive Science, 7(2), 156–176. https://doi.org/10.1002/wcs.1383.

    Article  PubMed  Google Scholar 

  • Paracchini, S., Thomas, A., Castro, S., Lai, C., Paramasivam, M., Wang, Y., … & Francks, C. (2006). The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Human Molecular Genetics, 15(10), 1659–1666.

    Google Scholar 

  • Paulesu, E. (2001). Dyslexia: Cultural diversity and biological unity. Science, 291(5511), 2165–2167. https://doi.org/10.1126/science.1057179.

    Article  PubMed  Google Scholar 

  • Paulesu, E., Danelli, L., & Berlingeri, M. (2014). Reading the dyslexic brain: multiple dysfunctional routes revealed by a new meta-analysis of PET and fMRI activation studies. Frontiers in Human Neuroscience, 8(November), 830. https://doi.org/10.3389/fnhum.2014.00830.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paulesu, E., Frith, U., Snowling, M., Gallagher, A., Morton, J., Frackowiak, R. S. J., et al. (1996). Is developmental dyslexia a disconnection syndrome? Evidence from PET scanning. Brain, 119(1), 143–157. https://doi.org/10.1093/brain/119.1.143.

    Article  PubMed  Google Scholar 

  • Pennington, B. F. (2006). From single to multiple deficit models of developmental disorders. Cognition, 101(2), 385–413.

    Article  PubMed  Google Scholar 

  • Peterson, R., & Pennington, B. (2015). Developmental dyslexia. Annual Review of Clinical Psychology, 11, 283–307. https://doi.org/10.1146/annurev-clinpsy-032814-112842.

    Article  PubMed  Google Scholar 

  • Phillips, B. M., & Lonigan, C. J. (2005). Social correlates of emergent literacy. In M. J. Snowling & C. Hulme (Eds.), The science of reading: A handbook (pp. 173–187). Oxford, UK: Blackwell Publishing Ltd. https://doi.org/10.1002/9780470757642.ch10.

  • Platt, M. P., Adler, W. T., Mehlhorn, A. J., Johnson, G. C., Wright, K. A., Choi, R. T., … Rosen, G. D. (2013). Embryonic disruption of the candidate dyslexia susceptibility gene homolog Kiaa0319-like results in neuronal migration disorders. Neuroscience, 248, 585–593. https://doi.org/10.1016/j.neuroscience.2013.06.056.

    Article  PubMed  Google Scholar 

  • Plomin, R., Haworth, C. M. A., Meaburn, E. L., Price, T. S., & Davis, O. S. P. (2013). Common DNA markers can account for more than half of the genetic influence on cognitive abilities. Psychological Science, 24(4), 562–568. https://doi.org/10.1177/0956797612457952.

    Article  PubMed  Google Scholar 

  • Powers, S. J., Wang, Y., Beach, S. D., Sideridis, G. D., & Gaab, N. (2016). Examining the relationship between home literacy environment and neural correlates of phonological processing in beginning readers with and without a familial risk for dyslexia: An fMRI study. Annals of Dyslexia, 66(3), 337–360.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramus, F., Rosen, S., Dakin, S. C., Day, B. L., Castellote, J. M., White, S., et al. (2003). Theories of developmental dyslexia: Insights from a multiple case study of dyslexic adults. Brain, 126(4), 841–865. https://doi.org/10.1093/brain/awg076.

    Article  PubMed  Google Scholar 

  • Ramus, F., & Szenkovits, G. (2008) What phonological deficit? The Quarterly Journal of Experimental Psychology, 61(1),129–141. https://doi.org/10.1080/17470210701508822

    Article  Google Scholar 

  • Raschle, N. M., Chang, M., & Gaab, N. (2011). Structural brain alterations associated with dyslexia predate reading onset. NeuroImage, 57(3), 742–749. https://doi.org/10.1016/j.neuroimage.2010.09.055.

    Article  PubMed  Google Scholar 

  • Raschle, N. M., Stering, P. L., Meissner, S. N., & Gaab, N. (2014). Altered neuronal response during rapid auditory processing and its relation to phonological processing in prereading children at familial risk for dyslexia. Cerebral Cortex, 24(9), 2489–2501. https://doi.org/10.1093/cercor/bht104.

    Article  PubMed  Google Scholar 

  • Reardon, S. F., Robinson-Cimpian, J. P., & Weathers, E. S. (2014). Patterns and trends in racial/ethnic and socioeconomic academic achievement gaps. In H. A. Ladd & M. E. Goertz (Eds.), Handbook of research in education finance and policy. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Richlan, F., Kronbichler, M., & Wimmer, H. (2009). Functional abnormalities in the dyslexic brain: A quantitative meta-analysis of neuroimaging studies. Human Brain Mapping, 30(10), 3299–3308.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richlan, F., Kronbichler, M., & Wimmer, H. (2013). Structural abnormalities in the dyslexic brain: A meta-analysis of voxel-based morphometry studies. Human Brain Mapping, 34(11), 3055–3065. https://doi.org/10.1002/hbm.22127.

    Article  PubMed  Google Scholar 

  • Rimrodt, S. L., Peterson, D. J., Denckla, M. B., Kaufmann, W. E., & Cutting, L. E. (2010). White matter microstructural differences linked to left perisylvian language network in children with dyslexia. Cortex, 46(6), 739–749. https://doi.org/10.1016/j.cortex.2009.07.008.

    Article  PubMed  Google Scholar 

  • Rumsey, J. M., Andreason, P., Zametkin, A. J., Aquino, T., King, A. C., Hamburger, S. D., … Cohen, R. M. (1992). Failure to activate the left temporoparietal cortex in dyslexia. An oxygen 15 positron emission tomographic study. Archives of Neurology, 49(5), 527–34.

    Article  PubMed  Google Scholar 

  • Rumsey, J. M., Horwitz, B., Donohue, B. C., Nace, K., Maisog, J. M., & Andreason, P. (1997a). Phonological and orthographic components of word recognition. A PET-rCBF study. Brain, 120(5), 739–759. https://doi.org/10.1093/brain/120.5.739.

    Article  PubMed  Google Scholar 

  • Rumsey, J. M., Nace, K., Donohue, B., Wise, D., Maisog, J. M., & Andreason, P. (1997b). A positron emission tomographic study of impaired word recognition and phonological processing in dyslexic men. Archives of Neurology, 54(5), 562–573.

    Article  PubMed  Google Scholar 

  • Rutter, M., & Yule, W. (1975). The concept of specific reading retardation. Journal of Child Psychology and Psychiatry, 16(3), 181–197.

    Article  PubMed  Google Scholar 

  • Salmelin, R., Kiesilä, P., Uutela, K., Service, E., & Salonen, O. (1996). Impaired visual word processing in dyslexia revealed with magnetoencephalography. Annals of Neurology, 40(2), 157–162. https://doi.org/10.1002/ana.410400206.

    Article  PubMed  Google Scholar 

  • Saygin, Z. M., Osher, D. E., Norton, E. S., Youssoufian, D. A., Beach, S., Feather, J., Gaab, N., Gabrieli, J., K. N. (2016). Connectivity precedes function in the development of the visual word form area. Nature Neuroscience, 19(9). https://doi.org/10.1038/nn.4354.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saygin, Z. M., Norton, E. S., Osher, D. E., Beach, S. D., Cyr, A. B., Ozernov-Palchik, O., … Gabrieli, J. D. E. (2013). Tracking the roots of reading ability: White matter volume and integrity correlate with phonological awareness in prereading and early-reading kindergarten children. The Journal of Neuroscience, 33(33), 13251–13258. https://doi.org/10.1523/jneurosci.4383-12.2013.

    Article  PubMed  Google Scholar 

  • Schultz, J. J. (2008). Is dyslexia hereditary? family education network. https://www.school.familyeducation.com/learningdisabilities/ genetics/42788.html. Retrieved from Aug 25, 2008.

  • Schulz, E., Maurer, U., van der Mark, S., Bucher, K., Brem, S., Martin, E., et al. (2008). Impaired semantic processing during sentence reading in children with dyslexia: Combined fMRI and ERP evidence. NeuroImage, 41(1), 153–168. https://doi.org/10.1016/j.neuroimage.2008.02.012.

    Article  PubMed  Google Scholar 

  • Shaywitz, B. E., Shaywitz, S. E., Blachman, B. A., Pugh, K. R., Fulbright, R. K., Skudlarski, P., Mencl, W. E., Constable, R. T., Holahan, J. M, Marchione, K. E. Fletcher, J. M., Lyon, G., R., & Gore, J. C. (2004). Development of left occipitotemporal systems for skilled reading in children after a phonologically-based intervention. Biological Psychiatry, 55, 926–933.

    Google Scholar 

  • Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Mencl, W. E., Fulbright, R. K., Skudlarski, P., … Gore, J. C. (2002). Disruption of posterior brain systems for reading in children with developmental dyslexia. Biological Psychiatry, 52(2), 101–110. https://doi.org/10.1016/s0006-3223(02)01365-3.

    Article  PubMed  Google Scholar 

  • Shaywitz, S. E. (1996). Dyslexia. Scientific American, 98–104.

    Article  PubMed  Google Scholar 

  • Shaywitz, S. E., Escobar, M. D., Shaywitz, B. A., Fletcher, J. M., & Makuch, R. (1992). Evidence that dyslexia may represent the lower tail of a normal distribution of reading ability. New England Journal of Medicine, 326, 145–150.

    Article  Google Scholar 

  • Shaywitz, S. E., Mody, M., & Shaywitz, B. A. (2006). Neural mechanisms in dyslexia. Current Directions in Psychological Science, 15(6), 278–281.

    Article  Google Scholar 

  • Shaywitz, S. E., & Shaywitz, B. A. (2008). Paying attention to reading: The neurobiology of reading and dyslexia. Development and Psychopathology, 20(4), 1329–1349. https://doi.org/10.1017/S0954579408000631.

    Article  PubMed  Google Scholar 

  • Shaywitz, S. E., Shaywitz, B. A., Pugh, K. R., Fulbright, R. K., Constable, R. T., Mencl, W. E., … Gore, J. C. (1998). Functional disruption in the organization of the brain for reading in dyslexia. Proceedings of the National Academy of Sciences, 95(5), 2636–2641. https://doi.org/10.1073/pnas.95.5.2636.

    Article  Google Scholar 

  • Silani, G., Frith, U., Demonet, J. F., Fazio, F., Perani, D., Price, C., … Paulesu, E. (2005). Brain abnormalities underlying altered activation in dyslexia: A voxel based morphometry study. Brain, 128(10), 2453–2461. https://doi.org/10.1093/brain/awh579.

    Article  PubMed  Google Scholar 

  • Simos, P. G., Fletcher, J. M., Bergman, E., Breier, J. I., Foorman, B. R., Castillo, E. M., … & Papanicolaou, A. C. (2002). Dyslexia-specific brain activation profile becomes normal following successful remedial training. Neurology, 58(8), 1203–1213.

    Google Scholar 

  • Simos, P. G., Fletcher, J. M., Sarkari, S., Billingsley-Marshall, R., Denton, C. A., & Papanicolaou, A. C. (2007). Intensive instruction affects brain magnetic activity associated with oral word reading in children with persistent reading disabilities. Journal of Learning Disabilities, 40(1), 37–48.

    Article  PubMed  Google Scholar 

  • Simos, P. G., Sarkari, S., Castillo, E. M., Billingsley-Marshall, R. L., Pataraia, E., Clear, T., et al. (2005). Reproducibility of measures of neurophysiological activity in Wernicke’s area: A magnetic source imaging study. Clinical Neurophysiology, 116(10), 2381–2391. https://doi.org/10.1016/j.clinph.2005.06.019.

    Article  PubMed  Google Scholar 

  • Siok, W. T., Niu, Z., Jin, Z., Perfetti, C. A., & Tan, L. H. (2008). A structural-functional basis for dyslexia in the cortex of Chinese readers. Proceedings of the National Academy of Sciences, 105(14), 5561–5566. https://doi.org/10.1073/pnas.0801750105.

    Article  Google Scholar 

  • Skottun, B. C. (2005). Magnocellular reading and dyslexia. Vision Research, 45(1), 133–134. https://doi.org/10.1016/j.visres.2003.09.039.

    Article  PubMed  Google Scholar 

  • Skyttner, L. (2006). General systems theory: Problems, perspective, practice. Singapore: World Scientific Publishing. https://doi.org/10.1142/5871.

    Book  Google Scholar 

  • Smythe, I., & Everatt, J. (2000). Dyslexia diagnosis in different languages. In L. Peer & G. Reid (Eds.), Multilingualism, literacy and dyslexia. London: David Fulton.

    Google Scholar 

  • Snowling, M. J., & Melby-Lervåg, M. (2016). Oral language deficits in familial dyslexia: A meta-analysis and review. Psychological Bulletin, 142(5), 498–545.

    Article  PubMed  PubMed Central  Google Scholar 

  • Specht, K., Hugdahl, K., Ofte, S., Nygård, M., Bjørnerud, A., Plante, E., et al. (2009). Brain activation on pre-reading tasks reveals at-risk status for dyslexia in 6-year-old children. Scandinavian Journal of Psychology, 50(1), 79–91. https://doi.org/10.1111/j.1467-9450.2008.00688.x.

    Article  PubMed  Google Scholar 

  • Stanovich, K. E. (1986). Matthew effects in reading: Some consequences of individual differences in the acquisition of literacy. Reading Research Quarterly, 21(4), 360–407. https://doi.org/10.1598/RRQ.21.4.1.

    Article  Google Scholar 

  • Stanovich, K. E., & Siegel, L. S. (1994). Phenotypic performance profile of children with reading disabilities: A regression-based test of the phonological-core variable-difference model. Journal of Educational Psychology, 86(1), 24.

    Article  Google Scholar 

  • Stein, J. (2001). The magnocellular theory of developmental dyslexia. Dyslexia, 7(1), 12–36. https://doi.org/10.1002/dys.186.

    Article  PubMed  Google Scholar 

  • Stein, J. (2014). Dyslexia: The role of vision and visual attention. Current Developmental Disorders Reports, 1(4), 267–280. https://doi.org/10.1007/s40474-014-0030-6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Szalkowski, C. E., Fiondella, C. G., Galaburda, A. M., Rosen, G. D., LoTurco, J. J., & Fitch, R. H. (2012). Neocortical disruption and behavioral impairments in rats following in utero RNAi of candidate dyslexia risk gene Kiaa0319. International Journal of Developmental Neuroscience, 30(4), 293–302. https://doi.org/10.1016/j.ijdevneu.2012.01.009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities in children. Brain and Language, 9(2), 182–198. https://doi.org/10.1016/0093-934X(80)90139-X.

    Article  PubMed  Google Scholar 

  • Tallal, P., & Gaab, N. (2006). Dynamic auditory processing, musical experience and language development. Trends in Neuroscience, 29(7), 382–390. https://doi.org/10.1016/j.tins.2006.06.003.

    Article  Google Scholar 

  • Tallal, P., Stark, R., & Mellits, E. (1985). Identification of language-impaired children on the basis of rapid perception and production skills. Brain and Language, 25(2), 314–322.

    Article  PubMed  Google Scholar 

  • Taylor, J., & Schatschneider, C. (2010). Genetic influence on literacy constructs in kindergarten and first grade: Evidence from a diverse twin sample. Behavior Genetics, 40(5), 591–602. https://doi.org/10.1007/s10519-010-9368-7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Temple, E. (2002). Brain mechanisms in normal and dyslexic readers. Current Opinion in Neurobiology, 12(2), 178–183. https://doi.org/10.1016/S0959-4388(02),00303-3.

    Article  PubMed  Google Scholar 

  • Temple, E., Poldrack, R. A., Protopapas, A., Nagarajan, S., Salz, T., Tallal, P., … Gabrieli, J. D. E. (2000). Disruption of the neural response to rapid acoustic stimuli in dyslexia: Evidence from functional MRI. Proceedings of the National Academy of Sciences, 97(25), 13907–13912. https://doi.org/10.1073/pnas.240461697.

    Article  Google Scholar 

  • Terras, M. M., Thompson, L. C., & Minnis, H. (2009). Dyslexia and psycho-social functioning: An exploratory study of the role of self-esteem and understanding. Dyslexia, 15(4), 304–327.

    Google Scholar 

  • Thesen, T., McDonald, C. R., Carlson, C., Doyle, W., Cash, S., Sherfey, J., … Halgren, E. (2012). Sequential then interactive processing of letters and words in the left fusiform gyrus. Nature Communications, 3, 1284. https://doi.org/10.1038/ncomms2220.

  • Torgesen, J. K. (2000). Individual differences in response to early interventions in reading: The lingering problem of treatment resisters. Learning Disabilities Research & Practice, 15, 55–64.

    Article  Google Scholar 

  • Torgesen, J., Myers, D., Schirm, A., Stuart, E., Vartivarian, S., Mansfield, W., … & Haan, C. (2006). National assessment of title I: Interim report. Volume II: Closing the reading gap: First year findings from a randomized trial of four reading interventions for striving readers. National Center for Education Evaluation and Regional Assistance.

    Google Scholar 

  • Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modified heritability of IQ in young children. Psychological Science, 14(6), 623–628. https://doi.org/10.1046/j.0956-7976.2003.psci_1475.x.

    Article  PubMed  Google Scholar 

  • Valås, H. (1999). Students with learning disabilities and low-achieving students: Peer acceptance, loneliness, self-esteem, and depression. Social Psychology of Education, 3(3), 173–192. https://doi.org/10.1023/A:1009626828789.

    Article  Google Scholar 

  • Vandermosten, M., Boets, B., Wouters, J., & Ghesquière, P. (2012). A qualitative and quantitative review of diffusion tensor imaging studies in reading and dyslexia. Neuroscience and Biobehavioral Reviews, 36(6), 1532–1552. https://doi.org/10.1016/j.neubiorev.2012.04.002.

    Article  PubMed  Google Scholar 

  • Vandermosten, M., Vanderauwera, J., Theys, C., De Vos, A., Vanvooren, S., Sunaert, S., … Ghesquière, P. (2015). A DTI tractography study in pre-readers at risk for dyslexia. Developmental Cognitive Neuroscience, 14, 8–15. https://doi.org/10.1016/j.dcn.2015.05.006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vellutino, F. R., Fletcher, J. M., Snowling, M. J., & Scanlon, D. M. (2004). Specific reading disability (dyslexia): What have we learned in the past four decades? Journal of Child Psychology and Psychiatry, 45(1), 2–40.

    Article  PubMed  Google Scholar 

  • Vellutino, F. R., Scanlon, D. M., Sipay, E. R., Small, S. G., Pratt, A., Chen, R., et al. (1996). Cognitive profiles of difficult-to-remediate and readily remediated poor readers: Early intervention as a vehicle for distinguishing between cognitive and experiential deficits as basic causes of specific reading disability. Journal of Educational Psychology, 88, 601–638.

    Article  Google Scholar 

  • Wada, J. A., Clarke, R., & Hamm, A. (1975). Cerebral hemispheric asymmetry in humans. Cortical speech zones in 100 adults and 100 infant brains. Archives of Neurology, 32(4), 239–246.

    Google Scholar 

  • Willcutt, E. G., & Pennington, B. F. (2000). Comorbidity of reading disability and attention-deficit/hyperactivity disorder: Differences by gender and subtype. Journal of Learning Disabilities, 33(2), 179–191.

    Article  PubMed  Google Scholar 

  • Willcutt, E. G., Pennington, B. F., Duncan, L., Smith, S. D., Keenan, J. M., Wadsworth, S., … & Olson, R. K. (2010). Understanding the complex etiologies of developmental disorders: behavioral and molecular genetic approaches. Journal of Developmental and Behavioral Pediatrics: JDBP, 31(7), 533.

    Google Scholar 

  • Wimmer, H., & Goswami, U. (1994). The influence of orthographic consistency on reading development: Word recognition in English and German children. Cognition, 51(1), 91–103.

    Article  PubMed  Google Scholar 

  • Ziegler, J. C., & Goswami, U. (2005). Reading acquisition, developmental dyslexia, and skilled reading across languages: A psycholinguistic grain size theory. Psychological Bulletin, 131(1), 3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald J. Bolger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sand, L.A., Bolger, D.J. (2019). The Neurobiological Strands of Developmental Dyslexia: What We Know and What We Don’t Know. In: Kilpatrick, D., Joshi, R., Wagner, R. (eds) Reading Development and Difficulties. Springer, Cham. https://doi.org/10.1007/978-3-030-26550-2_10

Download citation

Publish with us

Policies and ethics