Skip to main content

Patterns of Species Richness, Range Size, and Their Environmental Correlates for South American Anurans

  • Chapter
  • First Online:
Book cover Biogeographic Patterns of South American Anurans

Abstract

Species richness and range size gradients have been correlated with environmental conditions at broad spatial scales, yet these effects are commonly context-dependent for different geographical regions. Here we assembled range maps of South American anurans and used spatial and nonspatial regressions to assess the potential influences of environmental variables on the gradients of species richness and range sizes. Additionally, we evaluated the consistency of these environmental drivers separately for temperate/subtropical and tropical regions of South America. We found that vegetation structure, temperature, and energy-water balance were the strongest predictors of species richness at the continental scale; temperature, productivity, and elevation were the best predictors for range size. Explanatory power of predictors shifted across different regions of the continent: in the tropical, vegetation structure was the strongest correlate of species richness, and in the temperate/subtropical, temperature and energy-water balance were the most important predictors. As for range size, elevation and temperature were the best predictors in the tropical region, whereas temperature seasonality was the strongest predictor in the temperate/subtropical region. Our results support the idea that different environmental filters can vary according to the latitude, reinforcing the relevance of evaluating patterns at multiple spatial scales to understand environmental drivers of biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Belmaker J, Jetz W (2012) Regional pools and environmental controls of vertebrate richness. Am Nat 179:512–523

    Article  Google Scholar 

  • Brown JH, Stevens GC, Kaufman DF (1996) The geographic range: size, shape, boundaries, and internal structure. Ann Rev Ecol Syst 27:597–623

    Article  Google Scholar 

  • Buckley LB, Jetz W (2007) Environmental and historical constraints on global patterns of amphibian richness. P Roy Soc B-Biol Sci 274:1167–1173

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Buschke FT, De Meester L, Brendonck L, Vanschoenwinkel B (2015) Partitioning the variation in African vertebrate distributions into environmental and spatial components – exploring the link between ecology and biogeography. Ecography 38:450–461

    Article  Google Scholar 

  • Cassemiro FAS, Barreto BS, Rangel TFLV, Diniz-Filho JAF (2007) Non-stationarity, diversity gradients and the metabolic theory of ecology. Global Ecol Biogeogr 16:820–822

    Article  Google Scholar 

  • Clifford P, Richardson S, Hemon D (1989) Assessing the significance of the correlation between two spatial processes. Biometrics 45:123–134

    Article  CAS  Google Scholar 

  • Colwell RK, Lees DC (2000) The mid domain effect: geometry constraints on the geography of species richness. Trends Ecol Evol 15:70–76

    Article  CAS  Google Scholar 

  • Colwell RK, Gotelli NJ, Ashton LA et al (2016) Midpoint attractors and species richness: modelling the interaction between environmental drivers and geometric constraints. Ecol Lett 19:1009–1022

    Article  Google Scholar 

  • Coops NC, Rickbeil GJM, el al BDK (2018) Disentangling vegetation and climate as drivers of Australian vertebrate richness. Ecography 41:1147–1160

    Article  Google Scholar 

  • Crump ML (2015) Anuran reproductive modes: evolving perspectives. J Herpetol 49:1–16

    Article  Google Scholar 

  • da Silva FR, Almeida-Neto M, Prado VHM et al (2012) Humidity levels drive reproductive modes and phylogenetic diversity of amphibians in the Brazilian Atlantic Forest. J Biogeogr 39:1720–1732

    Article  Google Scholar 

  • Escoriza D, Ruhí A (2014) Macroecological patterns of amphibian assemblages in the Western Paleartic: Implications for conservation. Biol Conserv 176:252–261

    Article  Google Scholar 

  • Field R, Hawkins BA, Cornell HV et al (2009) Spatial species-richness gradients across scales: a meta-analysis. J Biogeogr 36:132–147

    Article  Google Scholar 

  • Fritz SA, Rahbek C (2012) Global patterns of amphibian phylogenetic diversity. J Biogeogr 39:1373–1382

    Article  Google Scholar 

  • Gaston KJ, Chown SL, Evans KL (2008) Ecogeographical rules: elements of a synthesis. J Biogeogr 35:483–500

    Article  Google Scholar 

  • Ghalambor CK, Huey RB, Martin PR et al (2006) Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr Comp Biol 46:5–17

    Article  Google Scholar 

  • Gotelli NJ, Anderson MJ, Arita HT et al (2009) Patterns and causes of species richness: a general simulation model for macroecology. Ecol Lett 12:873–886

    Article  Google Scholar 

  • Gouveia SF, Hortal J, Cassemiro FAZ et al (2013) Nonstationary effects of productivity, seasonality, and historical climate changes on global amphibian diversity. Ecography 36:104–113

    Article  Google Scholar 

  • Haddad CFB, Prado CPA (2005) Reproductive modes in frogs and their unexpected diversity in the Atlantic Forest of Brazil. BioScience 55:207–217

    Article  Google Scholar 

  • Hawkins BA, Diniz-Filho JAF (2006) Beyond Rapoport’s rule: evaluating range size patterns of New World birds in a two-dimensional framework. Global Ecol Biogeogr 15:461–469

    Article  Google Scholar 

  • Hawkins BA, Field R, Cornell HV et al (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117

    Article  Google Scholar 

  • Jenkins CN, Pimm SL, Joppa LN (2013) Global patterns of terrestrial vertebrate diversity and conservation. P Natl Acad Sci USA 110:E2602–E2610

    Article  CAS  Google Scholar 

  • Kissling WD, Carl G (2008) Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecol Biogeogr 17:59–71

    Article  Google Scholar 

  • Lewin A, Feldman A, Bauer AM et al (2016) Patterns of species richness, endemism and environmental gradients of African reptiles. J Biogeogr 43:2380–2390

    Article  Google Scholar 

  • Luo Z, Wei S, Zhang W et al (2015) Amphibian biodiversity congruence and conservation priorities in China: Integrating species richness, endemism, and threat patterns. Biol Conserv 191:650–658

    Article  Google Scholar 

  • Mac Nally R (2002) Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodivers Conserv 11:1397–1401

    Article  Google Scholar 

  • Marin J, Hedges SB (2016) Time best explains global variation in species richness of amphibians, birds and mammals. J Biogeogr 43:1069–1079

    Article  Google Scholar 

  • Moura MR, Villalobos F, Costa GC, Garcia PCA (2016) Disentangling the role of climate, topography and vegetation in species richness gradients. PLoS ONE 11:e0152468

    Article  Google Scholar 

  • Müller H, Liedtke HC, Menegon M et al (2013) Forests as promoters of terrestrial life-history strategies in East African amphibians. Biology Lett 9:20121146

    Article  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51:933–938

    Article  Google Scholar 

  • Polato NR, Gill BA, Shah AA et al (2018) Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. P Natl Acad Sci USA 115:12471–12476

    Article  CAS  Google Scholar 

  • Powney GD, Grenyer R, Orme CDL et al (2010) Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds. Global Ecol Biogeogr 19:386–396

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. Accessed 30 Jan 2018

  • Rahbek C, Gotelli NJ, Colwell RK et al (2007) Predicting continental-scale patterns of bird species richness with spatially explicit models. Proc R Soc B 274:165–174

    Article  Google Scholar 

  • Rapoport EH (1982) Areography. Geographical strategies of species. Pergamon Press, Oxford, UK

    Google Scholar 

  • Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7:1–15

    Article  Google Scholar 

  • Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am Nat 133:240–256

    Article  Google Scholar 

  • Sunday JM, Bates AE, Kearney MR (2014) Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. P Natl Acad Sci USA 111:5619–5615

    Article  Google Scholar 

  • Trakimas G, Whittaker RJ, Borregaard MK (2016) Do biological traits drive geographical patterns in European amphibians? Global Ecol Biogeogr 25:1228–1238

    Article  Google Scholar 

  • Vági B, Végvári Z, Liker A et al (2019) Parental care and the evolution of terrestriality in frogs. P Roy Soc B-Biol Sci 286:20182737

    Article  Google Scholar 

  • VanDerWal J, Murphy HT, Lovett-Doust J (2008) Three-dimensional mid-domain predictions: geometric constraints in North American amphibian, bird, mammal and tree species richness patterns. Ecography 31:435–449

    Article  Google Scholar 

  • Vasconcelos TS, dos Santos TG, Haddad CHB, Rossa-Feres DC (2010) Climatic variables and altitude as predictors of anuran species richness and number of reproductive modes in Brazil. J Trop Ecol 26:423–432

    Article  Google Scholar 

  • Vasconcelos TS, Rodríguez MA, Hawkins BA (2012) Species distribution modelling as a macroecological tool: a case study using New World amphibians. Ecography 35:539–548

    Article  Google Scholar 

  • Villalobos F, Dobrovolski R, Provete DB, Gouveia SF (2013) Is rich and rare the common share? Describing biodiversity patterns to inform conservation practices for South American anurans. PLoS ONE 8:e56073

    Article  CAS  Google Scholar 

  • Vitt LJ, Caldwell JP (2009) Herpetology: an introductory biology of amphibians and reptiles. Elsevier, Burlington, MA

    Google Scholar 

  • Werner EE, Skelly DK, Relyea RA, Yurewicz KL (2007) Amphibian species richness across environmental gradients. Oikos 116:1697–1712

    Article  Google Scholar 

  • Whitton FJS, Purvis A, Orme CDL, Olalla-Tárraga MÁ (2012) Understanding global patterns in amphibian geographic range size: does Rapoport rule? Global Ecol Biogeogr 21:179–190

    Article  Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Rev Ecol Evol S 36:519–539

    Article  Google Scholar 

  • Yee DA, Juliano SA (2007) Abundance matters: a field experiment testing the more individuals hypothesis for richness–productivity relationships. Oecologia 153:153–162

    Article  Google Scholar 

Download references

Acknowledgments

The authors have been continuously supported by research grants and/or fellowships from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2011/18510-0; 2013/50714-0; 2016/13949-7), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 2037/2014-9; 431012/2016-4; 308687/2016-17; 114613/2018-4), and University Research and Scientific Production Support Program of the Goias State University (PROBIP/UEG). Prof. Dr. Fabrício Barreto Teresa (UEG) read critically the first version of this manuscript and provided insightful comments that improved it.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vasconcelos, T.S., da Silva, F.R., dos Santos, T.G., Prado, V.H.M., Provete, D.B. (2019). Patterns of Species Richness, Range Size, and Their Environmental Correlates for South American Anurans. In: Biogeographic Patterns of South American Anurans. Springer, Cham. https://doi.org/10.1007/978-3-030-26296-9_3

Download citation

Publish with us

Policies and ethics