Skip to main content

Catalytic Materials for Hydrodesulfurization Processes, Experimental Strategies to Improve Their Performance

  • Chapter
  • First Online:
Advanced Catalytic Materials: Current Status and Future Progress

Abstract

The performance of catalytic materials for hydrodesulfurization processes is highly sensitive to the preparation method and to the activation procedure. Important improvements in activity and selectivity can be achieved through the selection of adequate support matrix, use of organic additives, different precursor salts, and use of sulfidation procedures that favor complete sulfidation of the precursors of the active sulfided phase. Several essential experimental strategies to improve the performance of HDS catalysts are discussed here in the light of some of the works performed in our laboratory. Important activity and selectivity changes during the hydrodesulfurization of sulfur-containing molecules of different structure and reactivity (thiophene, dibenzothiophene, and 4,6-dimethyldibenzothiophene) over Mo, CoMo, and NiMo sulfides are produced when the catalyst support matrix is changed from alumina to titania. The comparison evidenced that the promotional effect of Co and Ni is substantially different for each reactive molecule on the different catalyst series. Similarly, positive changes in activity are produced with the use of EDTA or citric acid as organic additives during the preparation of alumina-supported unpromoted and co-promoted molybdenum sulfide. Differences in the extent of promotion are the source of the activity improvements when Co(Ni)-Mo(W)-based heteropolycompounds are used as alternative active-phase precursors in catalyst preparations. Some important preparation aspects are discussed for the design of selective HDS catalytic materials for hydrodesulfurization of FCC gasoline, which must provide high hydrodesulfurization without increasing the hydrogenation reactions. Finally, the importance of choosing a proper methodology for the activation of the supported phases to achieve an improved performance of the catalytic materials is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    LHSV is the ratio of the hourly volume of oil processed to the volume of catalyst.

References

  1. H. Topsøe, B.S. Clausen, F.E. Massoth, Hydrotreating catalysis, in Catalysis, ed. by A. J. R. Boudart, M., (Springer-Verlag, Berlin Heidelberg New York, 1996), pp. 1–269. https://doi.org/10.1007/978-3-642-61040-0_1

    Chapter  Google Scholar 

  2. L.S. Byskov, J.K. Nørskov, B.S. Clausen, H. Topsøe, DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts. J. Catal. 187, 109–122 (1999). https://doi.org/10.1006/jcat.1999.2598

    Article  CAS  Google Scholar 

  3. P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan, H. Toulhoat, Ab Initio study of the H2–H2S/MoS2 gas–solid interface: the nature of the catalytically active sites. J. Catal. 189, 129 (2000). https://doi.org/10.1006/jcat.1999.2698

    Article  CAS  Google Scholar 

  4. P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan, H. Toulhoat, Structure, energetics, and electronic properties of the surface of a promoted MoS2 catalyst: an ab initio local density functional study. J. Catal. 190, 128–143 (2000). https://doi.org/10.1006/jcat.1999.2743

    Article  CAS  Google Scholar 

  5. H. Schweiger, P. Raybaud, G. Kresse, H. Toulhoat, Shape and edge sites modifications of MoS2 catalytic nanoparticles induced by working conditions: a theoretical study. J. Catal. 207, 76–87 (2002). https://doi.org/10.1006/jcat.2002.3508

    Article  CAS  Google Scholar 

  6. H. Schweiger, P. Raybaud, H. Toulhoat, Promoter sensitive shapes of Co(Ni)MoS nanocatalysts in sulfo-reductive conditions. J. Catal. 212, 33–38 (2002). https://doi.org/10.1006/jcat.2002.3737

    Article  CAS  Google Scholar 

  7. S. Cristol, J.F. Paul, E. Payen, D. Bougeard, S. Clémendot, F. Hutschka, Theoretical study of the MoS2 (100) surface: a chemical potential analysis of sulfur and hydrogen coverage. 2. Effect of the total pressure on surface stability. J. Phys. Chem. B 106, 5659–5667 (2002). https://doi.org/10.1021/jp0134603

    Article  CAS  Google Scholar 

  8. M.V. Bollinger, K.W. Jacobsen, J.K. Nørskov, Atomic and electronic structure of MoS2 nanoparticles. Phys. Rev. B 67, 085410 (2003). https://doi.org/10.1103/PhysRevB.67.085410

    Article  CAS  Google Scholar 

  9. B. Hinnemann, J.K. Nørskov, H. Topsøe, A density functional study of the chemical differences between type I and type II MoS2-based structures in hydrotreating catalysts. J. Phys. Chem. B 109, 2245–2253 (2005). https://doi.org/10.1021/jp048842y

    Article  CAS  Google Scholar 

  10. S. Helveg, J.V. Lauritsen, E. Laegsgaard, I. Stensgaard, J.K. Nørskov, B.S. Clausen, H. Topsøe, F. Besenbacher, Atomic-scale structure of single-layer MoS2 nanoclusters. Phys. Rev. Lett. 84, 951–954 (2000). https://doi.org/10.1103/PhysRevLett.84.951

    Article  CAS  Google Scholar 

  11. J.V. Lauritsen, S. Helveg, E. Lægsgaard, I. Stensgaard, B.S. Clausen, H. Topsøe, F. Besenbacher, Atomic-scale structure of Co-Mo-S nanoclusters in hydrotreating catalysts. J. Catal. 197, 1–5 (2001). https://doi.org/10.1006/jcat.2000.3088

    Article  CAS  Google Scholar 

  12. A.K. Tuxen, H.G. Füchtbauer, B. Temel, B. Hinnemann, H. Topsøe, K.G. Knudsen, F. Besenbacher, J.V. Lauritsen, Atomic-scale insight into adsorption of sterically hindered dibenzothiophenes on MoS2 and Co–Mo–S hydrotreating catalysts. J. Catal. 295, 146–154 (2012). https://doi.org/10.1016/j.jcat.2012.08.004

    Article  CAS  Google Scholar 

  13. Á. Logadóttir, P.G. Moses, B. Hinnemann, N.Y. Topsøe, K.G. Knudsen, H. Topsøe, J.K. Nørskov, A density functional study of inhibition of the HDS hydrogenation pathway by pyridine, benzene, and H2S on MoS2-based catalysts. Catal. Today 111, 44–51 (2006). https://doi.org/10.1016/j.cattod.2005.10.018

    Article  CAS  Google Scholar 

  14. R. Candia, O. Sørensen, J. Villadsen, N.-Y. Topsøe, B.S. Clausen, H. Topsøe, Effect of sulfiding temperature on activity and structures of Co-Mo/Al2O3 catalysts. II. Bull. Soc. Chim. Belg. 93, 763–773 (1984). https://doi.org/10.1002/bscb.19840930818

    Article  CAS  Google Scholar 

  15. J. Ramirez, S. Fuentes, G. Díaz, M. Vrinat, M. Breysse, M. Lacroix, Hydrodesulphurization activity and characterization of sulphided molybdenum and cobalt-molybdenum catalysts. Comparison of alumina-, silica-alumina- and titania-supported catalysts. Appl. Catal. 52, 211–224 (1989). https://doi.org/10.1016/S0166-9834(00)83385-0

    Article  CAS  Google Scholar 

  16. J. Ramírez, F. Sánchez-Minero, Support effects in the hydrotreatment of model molecules. Catal. Today 130, 267–271 (2008). https://doi.org/10.1016/j.cattod.2007.10.103

    Article  CAS  Google Scholar 

  17. H. Shimada, T. Sato, Y. Yoshimura, J. Hiraishi, A. Nishijima, Support effect on the catalytic activity and properties of sulfided molybdenum catalysts. J. Catal. 110, 275–284 (1988). https://doi.org/10.1016/0021-9517(88)90319-3

    Article  CAS  Google Scholar 

  18. M. Breysse, J.L. Portefaix, M. Vrinat, Support effects on hydrotreating catalysts. Catal. Today 10, 489–505 (1991). https://doi.org/10.1016/0920-5861(91)80035-8

    Article  CAS  Google Scholar 

  19. A. Stanislaus, A. Marafi, M.S. Rana, Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal. Today 153, 1–68 (2010). https://doi.org/10.1016/j.cattod.2010.05.011

    Article  CAS  Google Scholar 

  20. H. Shimada, Morphology and orientation of MoS2 clusters on Al2O3 and TiO2 supports and their effect on catalytic performance. Catal. Today 86, 17–29 (2003). https://doi.org/10.1016/S0920-5861(03)00401-2

    Article  CAS  Google Scholar 

  21. J. Ramirez, L. Cedeño, G. Busca, The role of titania support in Mo-based hydrodesulfurization catalysts. J. Catal. 184, 59–67 (1999). https://doi.org/10.1006/jcat.1999.2451

    Article  CAS  Google Scholar 

  22. J. Ramírez, G. Macías, L. Cedeño, A. Gutiérrez-Alejandre, R. Cuevas, P. Castillo, The role of titania in supported Mo, CoMo, NiMo, and NiW hydrodesulfurization catalysts: analysis of past and new evidences. Catal. Today 98, 19–30 (2004). https://doi.org/10.1016/j.cattod.2004.07.050

    Article  CAS  Google Scholar 

  23. L. Coulier, J.A.R. van Veen, J.W. Niemantsverdriet, TiO2-supported Mo model catalysts: Ti as promoter for thiophene HDS. Catal. Lett. 79, 149–155 (2002). https://doi.org/10.1023/A:1015312509749

    Article  CAS  Google Scholar 

  24. C. Arrouvel, M. Breysse, H. Toulhoat, P. Raybaud, A density functional theory comparison of anatase (TiO2)- and γ-Al2O3-supported MoS2 catalysts. J. Catal. 232, 161–178 (2005). https://doi.org/10.1016/j.jcat.2005.02.018

    Article  CAS  Google Scholar 

  25. P. Castillo-Villalón, J. Ramírez, R. Cuevas, P. Vázquez, R. Castañeda, Influence of the support on the catalytic performance of Mo, CoMo, and NiMo catalysts supported on Al2O3 and TiO2 during the HDS of thiophene, dibenzothiophene, or 4,6-dimethyldibenzothiophene. Catal. Today 259, 140–149 (2015). https://doi.org/10.1016/j.cattod.2015.06.008

    Article  CAS  Google Scholar 

  26. R.R. Chianelli, G. Berhault, P. Raybaud, S. Kasztelan, J. Hafner, H. Toulhoat, Periodic trends in hydrodesulfurization: in support of the Sabatier principle. Appl. Catal. A Gen. 227, 83–96 (2002). https://doi.org/10.1016/S0926-860X(01)00924-3

    Article  CAS  Google Scholar 

  27. J. Ramírez, A. Gutierrez-Alejandre, Characterization and hydrodesulfurization activity of W-based catalysts supported on Al2O3–TiO2 mixed oxides. J. Catal. 170, 108–122 (1997). https://doi.org/10.1006/jcat.1997.1713

    Article  Google Scholar 

  28. D. Costa, C. Arrouvel, M. Breysse, H. Toulhoat, P. Raybaud, Edge wetting effects of γ-Al2O3 and anatase-TiO2 supports by MoS2 and CoMoS active phases: A DFT study. J. Catal. 246, 325–343 (2007). https://doi.org/10.1016/j.jcat.2006.12.007

    Article  CAS  Google Scholar 

  29. T.G. Kaufmann, A. Kaldor, G.F. Stuntz, M.C. Kerby, L.L. Ansell, Catalysis science and technology for cleaner transportation fuels. Catal. Today 62, 77–90 (2000). https://doi.org/10.1016/S0920-5861(00)00410-7

    Article  CAS  Google Scholar 

  30. P. Gripka, O. Bhan, W. Whitecotton, J. Esteban, Catalytic strategies to meet gasoline sulphur limits. Digit. Refining Process. Oper. Maintenance (2015). www.digitalrefining.com/article/1001120

  31. C. Song, An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal. Today 86, 211–263 (2003). https://doi.org/10.1016/S0920-5861(03)00412-7

    Article  CAS  Google Scholar 

  32. G.E.P. Box, J.S. Hunter, W.G. Hunter, Statistics for Experimenters: Design, Innovation, and Discovery, 2nd edn. (John Wiley & Sons, Inc., Hoboken, NJ, 2005)

    Google Scholar 

  33. H. Shimada, M. Kurita, T. Sato, Y. Yoshimura, T. Hirata, T. Konakahara, K. Sato, A. Nishihima, Support effect on the hydrocracking activity of molybdenum catalysts. Chem. Lett. 13, 1861–1864 (1984). https://doi.org/10.1246/cl.1984.1861

    Article  Google Scholar 

  34. T. Klicpera, M. Zdražil, High surface area MoO3/MgO: preparation by the new slurry impregnation method and activity in sulphided state in hydrodesulphurization of benzothiophene. Catal. Lett. 58, 47–51 (1999). https://doi.org/10.1023/A:1019036724583

    Article  CAS  Google Scholar 

  35. T. Klicpera, M. Zdražil, Synthesis of a high surface area monolayer MoO3/MgO catalyst in a (NH4)6Mo7O24/MgO/methanol slurry, and its hydrodesulfurization activity. J. Mater. Chem. 10, 1603–1608 (2000). https://doi.org/10.1039/b001375g

    Article  CAS  Google Scholar 

  36. T. Klimova, D. Solís Casados, J. Ramirez, New selective Mo and NiMo HDS catalysts supported on Al2O3-MgO(x) mixed oxides. Catal. Today 43, 135–146 (1998). https://doi.org/10.1016/S0920-5861(98)00142-4

    Article  CAS  Google Scholar 

  37. D. Solís, T. Klimova, J. Ramírez, T. Cortez, NiMo/Al2O3–MgO(x) catalysts: the effect of the prolonged exposure to ambient air on the textural and catalytic properties. Catal. Today 98, 99–108 (2004). https://doi.org/10.1016/j.cattod.2004.07.024

    Article  CAS  Google Scholar 

  38. D. Mey, S. Brunet, C. Canaff, F. Maugé, C. Bouchy, F. Diehl, HDS of a model FCC gasoline over a sulfided CoMo/Al2O3 catalyst: Effect of the addition of potassium. J. Catal. 227, 436–447 (2004). https://doi.org/10.1016/j.jcat.2004.07.013

    Article  CAS  Google Scholar 

  39. R. Zhao, C. Yin, H. Zhao, C. Liu, Effects of modified Co-Mo catalysts for FCC gasoline HDS on catalytic activity. Pet. Sci. Technol. 22, 1455–1463 (2004). https://doi.org/10.1081/LPET-200027756

    Article  CAS  Google Scholar 

  40. J.T. Miller, W.J. Reagan, J.A. Kaduk, C.L. Marshall, A.J. Kropf, Selective hydrodesulfurization of FCC naphtha with supported MoS2 catalysts: the role of cobalt. J. Catal. 193, 123–131 (2000). https://doi.org/10.1006/jcat.2000.2873

    Article  CAS  Google Scholar 

  41. C. Sudhakar, Selective hydrodesulfurization of cracked naphtha using hydrotalcite-supported catalysts, Patent 5,851,382, 1998

    Google Scholar 

  42. F. Trejo, M. Rana, J. Ancheyta, CoMo/MgO–Al2O3 supported catalysts: an alternative approach to prepare HDS catalysts. Catal. Today 130, 327–336 (2008). https://doi.org/10.1016/j.cattod.2007.10.105

    Article  CAS  Google Scholar 

  43. P. Nikulshin, D. Ishutenko, Y. Anashkin, A. Mozhaev, A. Pimerzin, Selective hydrotreating of FCC gasoline over KCoMoP/Al2O3 catalysts prepared with H3PMo12O40: Effect of metal loading. Fuel 182, 632–639 (2016). https://doi.org/10.1016/j.fuel.2016.06.016

    Article  CAS  Google Scholar 

  44. D. Ishutenko, P. Nikulshin, A. Pimerzin, Relation between composition and morphology of K(Co)MoS active phase species and their performances in hydrotreating of model FCC gasoline. Catal. Today 271, 16–27 (2016). https://doi.org/10.1016/j.cattod.2015.11.025

    Article  CAS  Google Scholar 

  45. D.D. Whitehurst, T. Isoda, I. Mochida, Present state of the art and future challenges in the hydrodesulfurization of polyaromatic sulfur compounds. Adv. Catal. 42, 345–471 (1998). https://doi.org/10.1016/S0360-0564(08)60631-8

    Article  CAS  Google Scholar 

  46. J.A.R. van Veen, E. Gerkema, A.M. van der Kraan, P.A.J.M. Hendriks, H. Beens, A 57Co Mössbauer emission spectrometric study of some supported CoMo hydrodesulfurization catalysts. J. Catal. 133, 112–123 (1992). https://doi.org/10.1016/0021-9517(92)90189-O

    Article  Google Scholar 

  47. R. Cattaneo, F. Rota, R. Prins, An XAFS study of the different influence of chelating ligands on the HDN and HDS of γ-Al2O3-supported NiMo catalysts. J. Catal. 199, 318–327 (2001). https://doi.org/10.1006/jcat.2001.3170

    Article  CAS  Google Scholar 

  48. A.J. van Dillen, R.J.A.M. Terörde, D.J. Lensveld, J.W. Geus, K.P. de Jong, Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes. J. Catal. 216, 257–264 (2003). https://doi.org/10.1016/S0021-9517(02)00130-6

    Article  CAS  Google Scholar 

  49. M. Sun, D. Nicosia, R. Prins, The effects of fluorine, phosphate and chelating agents on hydrotreating catalysts and catalysis. Catal. Today 86, 173–189 (2003). https://doi.org/10.1016/S0920-5861(03)00410-3

    Article  CAS  Google Scholar 

  50. G. Kishan, J.A.R. van Veen, J.W. Niemantsverdriet, Realistic surface science models of hydrodesulfurization catalysts on planar thin-film supports: the role of chelating agents in the preparation of CoW/SiO2 catalysts. Top. Catal. 29, 103–110 (2004). https://doi.org/10.1023/B:TOCA.0000029792.45691.d4

    Article  CAS  Google Scholar 

  51. M.S. Rana, J. Ramírez, A. Gutiérrez-Alejandre, J. Ancheyta, L. Cedeño, S.K. Maity, Support effects in CoMo hydrodesulfurization catalysts prepared with EDTA as a chelating agent. J. Catal. 246, 100–108 (2007). https://doi.org/10.1016/j.jcat.2006.11.025

    Article  CAS  Google Scholar 

  52. N. Frizi, P. Blanchard, E. Payen, P. Baranek, M. Reibeilleau, C. Dupuy, J.P. Dath, Genesis of new HDS catalysts through a careful control of the sulfidation of both Co and Mo atoms: Study of their activation under gas phase. Catal. Today 130, 272–282 (2008). https://doi.org/10.1016/j.cattod.2007.10.109

    Article  CAS  Google Scholar 

  53. C. Wivel, R. Candia, B.S. Clausen, S. Mørup, H. Topsøe, On the catalytic significance of a Co-Mo-S phase in Co-Mo/Al2O3 hydrodesulfurization catalysts: combined in situ Mössbauer emission spectroscopy and activity studies. J. Catal. 68, 453–463 (1981). https://doi.org/10.1016/0021-9517(81)90115-9

    Article  CAS  Google Scholar 

  54. H. Topsøe, B.S. Clausen, R. Candia, C. Wivel, S. Mørup, In situ Mössbauer emission spectroscopy studies of unsupported and supported sulfided Co-Mo hydrodesulfurization catalysts: evidence for and nature of a Co-Mo-S phase. J. Catal. 68, 433–452 (1981). https://doi.org/10.1016/0021-9517(81)90114-7

    Article  Google Scholar 

  55. N.-Y. Topsøe, H. Topsøe, Characterization of the structures and active sites in sulfided Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts by NO chemisorption. J. Catal. 84, 386–401 (1983). https://doi.org/10.1016/0021-9517(83)90010-6

    Article  Google Scholar 

  56. P. Raybaud, Understanding and predicting improved sulfide catalysts: Insights from first principles modeling. Appl. Catal. A Gen. 322, 76–91 (2007). https://doi.org/10.1016/j.apcata.2007.01.005

    Article  CAS  Google Scholar 

  57. J.V. Lauritsen, J. Kibsgaard, G.H. Olesen, P.G. Moses, B. Hinnemann, S. Helveg, J.K. Nørskov, B.S. Clausen, H. Topsøe, E. Lægsgaard, F. Besenbacher, Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. J. Catal. 249, 220–233 (2007). https://doi.org/10.1016/j.jcat.2007.04.013

    Article  CAS  Google Scholar 

  58. M.J. Ledoux, O. Michaux, G. Agostini, P. Panissod, CoMo sulfide catalysts studies by metal solid NMR: the question of the existence of the chemical synergy. J. Catal. 96, 189–201 (1985). https://doi.org/10.1016/0021-9517(85)90372-0

    Article  CAS  Google Scholar 

  59. M.J. Ledoux, On the structure of cobalt sulfide catalysts. Catal. Lett. 1, 429–431 (1988). https://doi.org/10.1007/BF00766202

    Article  CAS  Google Scholar 

  60. S.M.A.M. Bouwens, J.A.R. van Veen, D.C. Koningsberger, V.H.J. de Beer, R. Prins, Extended X-ray absorption fine structure determination of the structure of cobalt in carbon-supported Co and Co-Mo sulfide hydrodesulfurization catalysts. J. Phys. Chem. 95, 123–134 (1991). https://doi.org/10.1021/j100154a028

    Article  CAS  Google Scholar 

  61. S.M.A.M. Bouwens, F.B.M. van Zon, M.P. van dijk, A.M. van der Kraan, V.H.J. de Beer, J.A.R. van Veen, D.C. Koningsberger, On the structural differences between alumina-supported CoMoS type I and alumina-, silica-, and carbon-supported CoMoS type ii phases studied by XAFS, MES, and XPS. J. Catal. 146, 375–393 (1994). https://doi.org/10.1006/jcat.1994.1076

    Article  CAS  Google Scholar 

  62. J.T. Miller, C.L. Marshall, A.J. Kropf, (Co)MoS2/alumina hydrotreating catalysts: an EXAFS study of the chemisorption and partial oxidation with O2. J. Catal. 202, 89–99 (2001). https://doi.org/10.1006/jcat.2001.3273

    Article  CAS  Google Scholar 

  63. M.W.J. Crajé, S.P.A. Louwers, V.H.J. de Beer, R. Prins, A.M. van der Kraan, E.X.A.F.S. An, Study on the So-Called “Co-Mo-S” phase in Co/C and Co-Mo/C, compared with a Mössbauer emission spectroscopy study. J. Phys. Chem. 96, 5445–5452 (1992). https://doi.org/10.1021/j100192a048

    Article  Google Scholar 

  64. L. van Haandel, G.M. Bremmer, E.J.M. Hensen, T. Weber, The effect of organic additives and phosphoric acid on sulfidation and activity of (Co)Mo/Al2O3 hydrodesulfurization catalysts. J. Catal. 351, 95–106 (2017). https://doi.org/10.1016/j.jcat.2017.04.012

    Article  CAS  Google Scholar 

  65. A. Travert, C. Dujardin, F. Maugé, E. Veilly, S. Cristol, J.F. Paul, E. Payen, CO adsorption on CoMo and NiMo sulfide catalysts: a combined IR and DFT study. J. Phys. Chem. B 110, 1261–1270 (2006). https://doi.org/10.1021/jp0536549

    Article  CAS  Google Scholar 

  66. Y. Zhu, Q.M. Ramasse, M. Brorson, P.G. Moses, L.P. Hansen, C.F. Kisielowski, S. Helveg, Visualizing the stoichiometry of industrial-style Co-Mo-S catalysts with single-atom sensitivity. Angew. Chem. Int. Ed. Engl. 53, 10723–10727 (2014). https://doi.org/10.1002/anie.201405690

    Article  CAS  Google Scholar 

  67. F. Maugé, J.C. Lavalley, FT-IR study of CO adsorption on sulfided Mo/Al2O3 unpromoted or promoted by metal carbonyls: titration of sites. J. Catal. 137, 69–76 (1992). https://doi.org/10.1016/0021-9517(92)90139-9

    Article  Google Scholar 

  68. N.-Y. Topsøe, A. Tuxen, B. Hinnemann, J.V. Lauritsen, K.G. Knudsen, F. Besenbacher, H. Topsøe, Spectroscopy, microscopy and theoretical study of NO adsorption on MoS2 and Co–Mo–S hydrotreating catalysts. J. Catal. 279, 337–351 (2011). https://doi.org/10.1016/j.jcat.2011.02.002

    Article  CAS  Google Scholar 

  69. J. Ramirez, P. Castillo, L. Cedeño, R. Cuevas, M. Castillo, J.M. Palacios, A. López-Agudo, Effect of boron addition on the activity and selectivity of hydrotreating CoMo/Al2O3 catalysts. Appl. Catal. A Gen. 132, 317–334 (1995). https://doi.org/10.1016/0926-860X(95)00166-2

    Article  CAS  Google Scholar 

  70. A. Romero-Galarza, A. Gutiérrez-Alejandre, J. Ramírez, Analysis of the promotion of CoMoP/Al2O3 HDS catalysts prepared from a reduced H–P–Mo heteropolyacid Co salt. J. Catal. 280, 230–238 (2011). https://doi.org/10.1016/j.jcat.2011.03.021

    Article  CAS  Google Scholar 

  71. H. Topsøe, R. Candia, N.-Y. Topsøe, B.S. Clausen, On the state of the Co-Mo-S Model. Bull. Des Sociétés Chim. Belges. 93, 783–806 (1984). https://doi.org/10.1002/bscb.19840930820

    Article  Google Scholar 

  72. J.B. Peri, Computerized infrared studies of Mo/Al2O3 and Mo/SiO2 catalysts. J. Phys. Chem. 86, 1615–1622 (1982). https://doi.org/10.1021/j100206a028

    Article  CAS  Google Scholar 

  73. J. Bachelier, M. Tilliette, M. Cornac, J.C. Duchet, J.C. Lavalley, D. Cornet, Sulfided Co-Mo/Al2O3 catalysts: carbon monoxide chemisorption and surface structures. Bull. Soc. Chim. Belg. 93, 743–750 (1984). https://doi.org/10.1002/bscb.19840930816

    Article  CAS  Google Scholar 

  74. B. Müller, A.D. van Langeveld, J.A. Moulijn, H. Knözinger, Characterization of sulfided Mo/Al2O3 catalysts by temperature-programmed reduction and low-temperature Fourier transform infrared spectroscopy of adsorbed carbon monoxide. J. Phys. Chem. 97, 9028–9033 (1993). https://doi.org/10.1021/j100137a031

    Article  Google Scholar 

  75. F. Maugé, A. Vallet, J. Bachelier, J.C. Duchet, J.C. Lavalley, Preparation, characterization, and activity of sulfided catalysts promoted by Co(CO)3NO thermodecomposition. J. Catal. 162, 88–95 (1996). https://doi.org/10.1006/jcat.1996.0262

    Article  Google Scholar 

  76. P. Castillo-Villalón, J. Ramirez, R. Castañeda, Relationship between the hydrodesulfurization of thiophene, dibenzothiophene, and 4,6-dimethyl dibenzothiophene and the local structure of Co in Co-Mo-S sites: Infrared study of adsorbed CO. J. Catal. 294, 54–62 (2012). https://doi.org/10.1016/j.jcat.2012.07.002

    Article  CAS  Google Scholar 

  77. M. Osawa, K.-I. Ataka, K. Yoshii, Y. Nishikawa, Surface-enhanced infrared spectroscopy: the origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles. Appl. Spectrosc. 47, 1497–1502 (1993). https://doi.org/10.1366/0003702934067478

    Article  CAS  Google Scholar 

  78. J. Fan, M. Trenary, Symmetry and the surface infrared selection rule for the determination of the structure of molecules on metal surfaces. Langmuir 10, 3649–3657 (1994). https://doi.org/10.1021/la00022a044

    Article  CAS  Google Scholar 

  79. N. Sheppard, J. Erkelens, Vibrational spectra of species adsorbed on surfaces: forms of vibrations and selection rules for regular arrays of adsorbed species. Appl. Spectrosc. 38, 471–485 (1984). https://doi.org/10.1366/0003702844555133

    Article  CAS  Google Scholar 

  80. R.G. Greenler, D.R. Snider, D. Witt, R.S. Sorbello, The metal-surface selection rule for infrared spectra of molecules adsorbed on small metal particles. Surf. Sci. 118, 415–428 (1982). https://doi.org/10.1016/0039-6028(82)90197-2

    Article  CAS  Google Scholar 

  81. S.F.A. Kettle, The metal surface selection rule: its extension to transition metal carbonyl clusters. Spectrochim. Acta A Mol. Biomol. Spectrosc. 54, 1639–1643 (1998). https://doi.org/10.1016/S1386-1425(98)00091-2

    Article  Google Scholar 

  82. Y. Nishikawa, K. Fujiwara, T. Shima, A study of the qualitative and quantitative analysis of nanogram samples by transmission infrared spectroscopy with the use of Silver Island films. Appl. Spectrosc. 45, 747–751 (1991)

    Article  CAS  Google Scholar 

  83. M. Osawa, M. Ikeda, Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on Silver Island films: contributions of electromagnetic and chemical mechanisms. J. Phys. Chem. 95, 9914–9919 (1991). https://doi.org/10.1021/j100177a056

    Article  CAS  Google Scholar 

  84. N. Rinaldi, T. Kubota, Y. Okamoto, Effect of citric acid addition on the hydrodesulfurization activity of MoO3/Al2O3 catalysts. Appl. Catal. A Gen. 374, 228–236 (2010). https://doi.org/10.1016/j.apcata.2009.12.015

    Article  CAS  Google Scholar 

  85. N. Rinaldi, K.A.-D. Usman, T. Kubota, Y. Okamoto, Preparation of Co–Mo/B2O3/Al2O3 catalysts for hydrodesulfurization: effect of citric acid addition. Appl. Catal. A Gen. 360, 130–136 (2009). https://doi.org/10.1016/j.apcata.2009.03.006

    Article  CAS  Google Scholar 

  86. P. Castillo-Villalón, J. Ramirez, J.A. Vargas-Luciano, Analysis of the role of citric acid in the preparation of highly active HDS catalysts. J. Catal. 320, 127–136 (2014). https://doi.org/10.1016/j.jcat.2014.09.021

    Article  CAS  Google Scholar 

  87. P. Afanasiev, On the interpretation of temperature programmed reduction patterns of transition metals sulphides. Appl. Catal. A Gen. 303, 110–115 (2006). https://doi.org/10.1016/j.apcata.2006.02.014

    Article  CAS  Google Scholar 

  88. F. Bataille, J.-L. Lemberton, P. Michaud, G. Pérot, M. Vrinat, M. Lemaire, E. Schulz, M. Breysse, S. Kasztelan, Alkyldibenzothiophenes hydrodesulfurization-promoter effect, reactivity, and reaction mechanism. J. Catal. 191, 409–422 (2000). https://doi.org/10.1006/jcat.1999.2790

    Article  CAS  Google Scholar 

  89. P. Nikulshin, A. Mozhaev, C. Lancelot, P. Blanchard, E. Payen, C. Lamonier, Hydroprocessing catalysts based on transition metal sulfides prepared from Anderson and dimeric Co2Mo10-heteropolyanions. a review. C. R. Chim. 19, 1276–1285 (2016). https://doi.org/10.1016/j.crci.2015.10.006

    Article  CAS  Google Scholar 

  90. J. Liang, M. Wu, P. Wei, J. Zhao, H. Huang, C. Li, Y. Lu, Y. Liu, C. Liu, Efficient hydrodesulfurization catalysts derived from Strandberg P–Mo–Ni polyoxometalates. J. Catal. 358, 155–167 (2018). https://doi.org/10.1016/j.jcat.2017.11.026

    Article  CAS  Google Scholar 

  91. N. Al-zaqri, A. Alsalme, S.F. Adil, A. Alsaleh, S.G. Alshammari, S.I. Alresayes, R. Alotaibi, M. Al-Kinany, M.R.H. Siddiqui, Comparative catalytic evaluation of nickel and cobalt substituted phosphomolybdic acid catalyst supported on silica for hydrodesulfurization of thiophene. J. Saudi Chem. Soc. 21, 965–973 (2017). https://doi.org/10.1016/j.jscs.2017.05.004

    Article  CAS  Google Scholar 

  92. A. Griboval, P. Blanchard, E. Payen, M. Fournier, J.L. Dubois, Alumina supported HDS catalysts prepared by impregnation with new heteropolycompounds. Comparison with catalysts prepared by conventional Co–Mo–P coimpregnation. Catal. Today 45, 277–283 (1998). https://doi.org/10.1016/S0920-5861(98)00230-2

    Article  CAS  Google Scholar 

  93. A. Pimerzin, A. Mozhaev, A. Varakin, K. Maslakov, P. Nikulshin, Comparison of citric acid and glycol effects on the state of active phase species and catalytic properties of CoPMo/Al2O3 hydrotreating catalysts. Appl. Catal. B Environ. 205, 93–103 (2017). https://doi.org/10.1016/j.apcatb.2016.12.022

    Article  CAS  Google Scholar 

  94. B. Pawelec, S. Damyanova, R. Mariscal, J.L.G. Fierro, I. Sobrados, J. Sanz, L. Petrov, HDS of dibenzothiophene over polyphosphates supported on mesoporous silica. J. Catal. 223, 86–97 (2004). https://doi.org/10.1016/j.jcat.2004.01.018

    Article  CAS  Google Scholar 

  95. P.A. Nikulshin, A.V. Mozhaev, A.A. Pimerzin, V.V. Konovalov, A.A. Pimerzin, CoMo/Al2O3 catalysts prepared on the basis of Co2Mo10-heteropolyacid and cobalt citrate: effect of Co/Mo ratio. Fuel 100, 24–33 (2012). https://doi.org/10.1016/j.fuel.2011.11.028

    Article  CAS  Google Scholar 

  96. J. Ramírez, A. Gutiérrez-Alejandre, F. Sánchez-Minero, V. MacÍas-Alcántara, P. Castillo-Villalón, L. Oliviero, F. Maugé, HDS of 4,6-DMDBT over NiMoP/(x)Ti-SBA-15 catalysts prepared with H3PMo12O40. Energy Fuel 26, 773–782 (2012). https://doi.org/10.1021/ef201590g

    Article  CAS  Google Scholar 

  97. C.I. Cabello, F.M. Cabrerizo, A. Alvarez, H.J. Thomas, Decamolybdodicobaltate(iii) heteropolyanion: structural, spectroscopical, thermal and hydrotreating catalytic properties. J. Mol. Catal. A Chem. 186, 89–100 (2002). https://doi.org/10.1016/S1381-1169(02)00043-2

    Article  CAS  Google Scholar 

  98. S. Damyanova, J.L.G. Fierro, Structural features and thermal stability of titania-supported 12-molybdophosphoric heteropoly compounds. Chem. Mater. 10, 871–879 (1998). https://doi.org/10.1021/cm970639a

    Article  CAS  Google Scholar 

  99. L.R. Pizzio, P.G. Vázquez, C.V. Cáceres, M.N. Blanco, Supported Keggin type heteropolycompounds for ecofriendly reactions. Appl. Catal. A Gen. 256, 125–139 (2003). https://doi.org/10.1016/S0926-860X(03)00394-6

    Article  CAS  Google Scholar 

  100. L. Lizama, T. Klimova, Highly active deep HDS catalysts prepared using Mo and W heteropolyacids supported on SBA-15. Appl. Catal. B Environ. 82, 139–150 (2008). https://doi.org/10.1016/j.apcatb.2008.01.018

    Article  CAS  Google Scholar 

  101. A. Griboval, P. Blanchard, L. Gengembre, E. Payen, M. Fournier, J.L. Dubois, J.R. Bernard, Hydrotreatment catalysts prepared with heteropolycompound: characterisation of the oxidic precursors. J. Catal. 188, 102–110 (1999). https://doi.org/10.1006/jcat.1999.2633

    Article  CAS  Google Scholar 

  102. Y. Okamoto, A. Kato, N.R. Usman, T. Fujikawa, H. Koshika, I. Hiromitsu, T. Kubota, Effect of sulfidation temperature on the intrinsic activity of Co–MoS2 and Co–WS2 hydrodesulfurization catalysts. J. Catal. 265, 216–228 (2009). https://doi.org/10.1016/j.jcat.2009.05.003

    Article  CAS  Google Scholar 

  103. Y. Gochi, C. Ornelas, F. Paraguay, S. Fuentes, L. Alvarez, J.L. Rico, G. Alonso-Núñez, Effect of sulfidation on Mo-W-Ni trimetallic catalysts in the HDS of DBT. Catal. Today 107–108, 531–536 (2005). https://doi.org/10.1016/j.cattod.2005.07.068

    Article  CAS  Google Scholar 

  104. B.M. Vogelaar, N. Kagami, T.F. van der Zijden, A.D. van Langeveld, S. Eijsbouts, J.A. Moulijn, Relation between sulfur coordination of active sites and HDS activity for Mo and NiMo catalysts. J. Mol. Catal. A Chem. 309, 79–88 (2009). https://doi.org/10.1016/j.molcata.2009.04.018

    Article  CAS  Google Scholar 

  105. V.P. Fedin, J. Czyzniewska, R. Prins, T. Weber, Supported molybdenum–sulfur cluster compounds as precursors for HDS catalysts. Appl. Catal. A Gen. 213, 123–132 (2001). https://doi.org/10.1016/S0926-860X(00)00894-2

    Article  CAS  Google Scholar 

  106. W. Qian, A. Ishihara, Y. Aoyama, T. Kabe, Sulfidation of nickel- and cobalt-promoted molybdenum–alumina catalysts using a radioisotope 35S-labeled H2S pulse tracer method. Appl. Catal. A Gen. 196, 103–110 (2000). https://doi.org/10.1016/S0926-860X(99)00454-8

    Article  CAS  Google Scholar 

  107. C. Geantet, J.-M.M. Millet, Design of Heterogeneous Catalysts, 1st edn. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009). https://doi.org/10.1002/9783527625321

    Book  Google Scholar 

  108. M. Tang, H. Ge, W. Fan, G. Wang, Z. Lyu, X. Li, Presulfidation and activation mechanism of Mo/Al2O3 catalyst sulfided by ammonium thiosulfate. Korean J. Chem. Eng. 31, 1368–1376 (2014). https://doi.org/10.1007/s11814-014-0053-z

    Article  CAS  Google Scholar 

  109. T.C. Ho, S.C. Reyes, Design of catalyst sulfiding procedures. Chem. Eng. Sci. 45, 2633–2638 (1990). https://doi.org/10.1016/0009-2509(90)80152-5

    Article  CAS  Google Scholar 

  110. P. Arnoldy, J.A.M. van den Heijkant, G.D. de Bok, J.A. Moulijn, Temperature-programmed sulfiding of MoO3/Al2O3 catalysts. J. Catal. 92, 35–55 (1985). https://doi.org/10.1016/0021-9517(85)90235-0

    Article  CAS  Google Scholar 

  111. T. Weber, J.C. Muijsers, J.H.M.C. van Wolput, C.P.J. Verhagen, J.W. Niemantsverdriet, Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2 , as studied by X-ray photoelectron and infrared emission spectroscopy. J. Phys. Chem. 100, 14144–14150 (1996). https://doi.org/10.1021/jp961204y

    Article  CAS  Google Scholar 

  112. C. Bara, A.-F. Lamic-Humblot, E. Fonda, A.-S. Gay, A.-L. Taleb, E. Devers, M. Digne, G.D. Pirngruber, X. Carrier, Surface-dependent sulfidation and orientation of MoS2 slabs on alumina-supported model hydrodesulfurization catalysts. J. Catal. 344, 591–605 (2016). https://doi.org/10.1016/j.jcat.2016.10.001

    Article  CAS  Google Scholar 

  113. H. Farag, Effect of sulfidation temperatures on the bulk structures of various molybdenum precursors. Energy Fuel 16, 944–950 (2002). https://doi.org/10.1021/ef0102972

    Article  CAS  Google Scholar 

  114. L. van Haandel, G.M. Bremmer, E.J.M. Hensen, T. Weber, Influence of sulfiding agent and pressure on structure and performance of CoMo/Al2O3 hydrodesulfurization catalysts. J. Catal. 342, 27–39 (2016). https://doi.org/10.1016/j.jcat.2016.07.009

    Article  CAS  Google Scholar 

  115. L. van Haandel, M. Bremmer, P.J. Kooyman, J.A.R. van Veen, T. Weber, E.J.M. Hensen, Structure-activity correlations in hydrodesulfurization reactions over Ni-promoted MoxW(1-x)S2/Al2O3 Catalysts. ACS Catal. 5, 7276–7287 (2015). https://doi.org/10.1021/acscatal.5b01806

    Article  CAS  Google Scholar 

  116. A. Villarreal, J. Ramírez, L. Cedeño-Caero, P. Castillo-Villalón, A. Gutiérrez-Alejandre, Importance of the sulfidation step in the preparation of highly active NiMo/SiO2/Al2O3 hydrodesulfurization catalysts. Catal. Today 250, 60–65 (2015). https://doi.org/10.1016/j.cattod.2014.03.035

    Article  CAS  Google Scholar 

  117. T. Kubota, N. Rinaldi, K. Okumura, T. Honma, S. Hirayama, Y. Okamoto, In situ XAFS study of the sulfidation of Co–Mo/B2O3/Al2O3 hydrodesulfurization catalysts prepared by using citric acid as a chelating agent. Appl. Catal. A Gen. 373, 214–221 (2010). https://doi.org/10.1016/j.apcata.2009.11.023

    Article  CAS  Google Scholar 

  118. J. Escobar, M.C. Barrera, A.W. Gutiérrez, J.E. Terrazas, Benzothiophene hydrodesulfurization over NiMo/alumina catalysts modified by citric acid. Effect of addition stage of organic modifier. Fuel Process. Technol. 156, 33–42 (2017). https://doi.org/10.1016/j.fuproc.2016.09.028

    Article  CAS  Google Scholar 

  119. L. van Haandel, E.J.M. Hensen, T. Weber, FT-IR study of NO adsorption on MoS2/Al2O3 hydrodesulfurization catalysts: effect of catalyst preparation. Catal. Today 292, 67–73 (2017). https://doi.org/10.1016/j.cattod.2016.07.028

    Article  CAS  Google Scholar 

  120. A.V. Pashigreva, G.A. Bukhtiyarova, O.V. Klimov, G.S. Litvak, A.S. Noskov, Influence of the heat treatment conditions on the activity of the CoMo/Al2O3 catalyst for deep hydrodesulfurization of diesel fractions. Kinet. Catal. 49, 812–820 (2008). https://doi.org/10.1134/S0023158408060062

    Article  CAS  Google Scholar 

  121. H. Li, M. Li, Y. Chu, F. Liu, H. Nie, Essential role of citric acid in preparation of efficient NiW/Al2O3 HDS catalysts. Appl. Catal. A Gen. 403, 75–82 (2011). https://doi.org/10.1016/j.apcata.2011.06.015

    Article  CAS  Google Scholar 

  122. E.J.M. Hensen, V.H.J. de Beer, J.A.R. van Veen, R.A. van Santen, A refinement on the notion of type I and II (Co)MoS phases in hydrotreating catalysts. Catal. Lett. 84, 59–67 (2002). https://doi.org/10.1023/A:1021024617582

    Article  CAS  Google Scholar 

  123. P. Blanchard, C. Lamonier, A. Griboval, E. Payen, New insight in the preparation of alumina supported hydrotreatment oxidic precursors: a molecular approach. Appl. Catal. A Gen. 322, 33–45 (2007). https://doi.org/10.1016/j.apcata.2007.01.018

    Article  CAS  Google Scholar 

  124. L. Bing, A. Tian, J. Li, K. Yi, F. Wang, C. Wu, G. Wang, The effects of chelating agents on CoMo/TiO2–Al2O3 hydrodesulfurization catalysts. Catal. Lett. 148, 1309–1314 (2018). https://doi.org/10.1007/s10562-018-2331-6

    Article  CAS  Google Scholar 

  125. Y. Zhang, W. Han, X. Long, H. Nie, Redispersion effects of citric acid on CoMo/γ-Al2O3 hydrodesulfurization catalysts. Catal. Commun. 82, 20–23 (2016). https://doi.org/10.1016/j.catcom.2016.04.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Facultad de Química-UNAM, PAIP 5000-9072, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Ramírez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramírez, J., Castillo-Villalón, P., Gutiérrez-Alejandre, A., Cuevas, R., Villarreal, A. (2019). Catalytic Materials for Hydrodesulfurization Processes, Experimental Strategies to Improve Their Performance. In: Domínguez-Esquivel, J., Ramos, M. (eds) Advanced Catalytic Materials: Current Status and Future Progress. Springer, Cham. https://doi.org/10.1007/978-3-030-25993-8_4

Download citation

Publish with us

Policies and ethics