Skip to main content

The Large Hadron Collider at CERN

  • Chapter
  • First Online:
  • 290 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The Large Hadron Collider at CERN is the currently most powerful accelerator of the world. It serves as an ideal laboratory to search for new particles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note, that the instantaneous luminosity in the LHC is not constant over time, but decays due to the degradation of intensities and emittances of the circulating beams, mainly due to beam loss from collisions.

References

  1. De Broglie M (1921) Les phénoménes photo-électriques pour les rayons X et les spectres corpusculaires des éléments. J Phys Radium 2:9. https://doi.org/10.1051/jphys-rad:0192100209026500

  2. Gaisser TK, Engel R, Resconi E (2016) Cosmic rays and particle physics. Cambridge University Press. isbn: 9781316598436

    Google Scholar 

  3. Lemoine M, Sigl G (2001) Physics and astrophysics of ultra high energy cosmic rays. Lecture notes in physics. Springer, Berlin Heidelberg. isbn: 9783540428992

    Google Scholar 

  4. Evans L, Bryant P (2008) LHC machine. J Instrum 3(08):S08001

    Article  ADS  Google Scholar 

  5. LEP design report, vol 1. The LEP injector chain (1983). http://cds.cern.ch/record/98881

  6. LEP design report: vol 2. The LEP main ring (1984). http://cds.cern.ch/record/102083

  7. ATLAS Collaboration (2008) The ATLAS experiment at the CERN Large Hadron Collider. JINST 3:S08003. https://doi.org/10.1088/1748-0221/3/08/S08003

    Google Scholar 

  8. CMS Collaboration (2008) The CMS experiment at the CERN LHC. JINST 3:S08004. https://doi.org/10.1088/1748-0221/3/08/S08004

    Google Scholar 

  9. Aamodt K et al (2008) The ALICE experiment at the CERN LHC. JINST 3:S08002. https://doi.org/10.1088/1748-0221/3/08/S08002

    Google Scholar 

  10. Alves A et al (2008) The LHCb detector at the LHC. JINST 3:S08005. https://doi.org/10.1088/1748-0221/3/08/S08005

    ADS  Google Scholar 

  11. Bruning O et al (2004) LHC design report: vol 2. The LHC infrastructure and general services. http://cds.cern.ch/record/815187

  12. Bruning OS et al (2004) LHC design report: vol 1. The LHC main ring. http://cds.cern.ch/record/782076

  13. Casas J et al (1992) Design concept and first experimental validation of the superfluid helium system for the Large Hadron Collider (LHC) project at CERN. In: Proceedings of the fourteenth international cryogenic engineering conference and international cryogenic materials conference cryogenic engineering & superconductor technology. Cryogenics, vol 32, pp 118–121. issn: 0011-2275. https://doi.org/10.1016/0011-2275(92)90122-Q

    Article  ADS  Google Scholar 

  14. Benedikt M et al (2004) LHC design report: vol 3. The LHC injector chain. http://cds.cern.ch/record/823808

  15. Wiedemann H (1999) Particle accelerator physics I, vol 1. Springer. isbn: 9783540646716. https://books.google.de/books?id=nTJOUx5oQQ0C

    Book  Google Scholar 

  16. Frauenfelder H, Henley EM, Reck M (1999) Teilchen und Kerne: dieWelt der subatomaren Physik. Oldenbourg. isbn: 9783486244175

    Google Scholar 

  17. Haffner J (2013) The CERN accelerator complex. https://cds.cern.ch/record/1621894

  18. Adriani O et al (2008) The LHCf detector at the CERN Large Hadron Collider. JINST 3:S08006. https://doi.org/10.1088/1748-0221/3/08/S08006

    Google Scholar 

  19. Anelli G et al (2008) The TOTEM experiment at the CERN Large Hadron Collider. JINST 3:S08007. https://doi.org/10.1088/1748-0221/3/08/S08007

    Google Scholar 

  20. Pinfold J et al (2009) Technical design report of the MoEDAL experiment. CERN-LHCC-2009-006

    Google Scholar 

  21. ATLAS Collaboration (2018). https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2

  22. Campbell JM, Huston JW, Stirling WJ (2007) Hard interactions of quarks and gluons: a primer for LHC physics. Rep Prog Phys 70:89. https://doi.org/10.1088/0034-4885/70/1/R02

    Article  ADS  Google Scholar 

  23. Field RD (2001) The underlying event in hard scattering processes. In: eConf C010630, p P501. arXiv: hep-ph/0201192 [hep-ph]

  24. Moraes A, Buttar C, Dawson I (2007) Prediction for minimum bias and the underlying event at LHC energies. Eur Phys J C 50:435–466. https://doi.org/10.1140/epjc/s10052-007-0239-1

    Article  ADS  Google Scholar 

  25. Collins JC, Soper DE, Sterman GF (1989) Factorization of hard processes in QCD. Adv Ser Direct High Energy Phys 5:1–91. https://doi.org/10.1142/9789814503266_0001

    Article  ADS  MATH  Google Scholar 

  26. Martin AD et al (2009) Parton distributions for the LHC. Eur Phys J C 63:189–285. https://doi.org/10.1140/epjc/s10052-009-1072-5

    Article  ADS  MATH  Google Scholar 

  27. Pumplin J et al (2002) New generation of parton distributions with uncertainties from global QCD analysis. JHEP 07:012. https://doi.org/10.1088/1126-6708/2002/07/012

    Article  Google Scholar 

  28. Ball RD et al (2013) Parton distributions with LHC data. Nucl Phys B 867:244–289. https://doi.org/10.1016/j.nuclphysb.2012.10.003

    Article  ADS  Google Scholar 

  29. Ball RD et al (2011) Impact of heavy quark masses on parton distributions and LHC phenomenology. Nucl Phys B 849:296–363. https://doi.org/10.1016/j.nuclphysb.2011.03.021

    Article  ADS  Google Scholar 

  30. Bhatti A, Lincoln D (2010) Jet physics at the tevatron. Annu Rev Nucl Part Sci 60:267–297. https://doi.org/10.1146/annurev.nucl.012809.104430

    Article  ADS  Google Scholar 

  31. Duckeck G et al (2005) ATLAS computing: technical design report

    Google Scholar 

  32. Bird I et al (2005) LHC computing grid. Technical design report

    Google Scholar 

  33. Worldwide LHC computing grid (2018). http://wlcg.web.cern.ch/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Maximilian Köhler .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Köhler, N.M. (2019). The Large Hadron Collider at CERN. In: Searches for the Supersymmetric Partner of the Top Quark, Dark Matter and Dark Energy at the ATLAS Experiment. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-25988-4_5

Download citation

Publish with us

Policies and ethics