Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 313 Accesses

Abstract

The chapter introduces the Standard Model of Particle Physics which describes the electroweak and the strong interaction as well as all currently known matter particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since neutrinos only interact weakly, right-handed neutrinos do not interact within the SM at all.

  2. 2.

    The European Organisation for Nuclear Research in Geneva, Switzerland, originally: Conseil Européen pour la Recherche Nucléaire.

References

  1. Einstein A (2005) Zur Elektrodynamik bewegter Körper [AdP 17, 891 (1905)]. Annalen der Physik 14(S1):194–224. https://doi.org/10.1002/andp.200590006

    Article  ADS  Google Scholar 

  2. Ade PAR et al (2014) Planck 2013 results. I. Overview of products and scientific results. Astron Astrophys 571:A1. https://doi.org/10.1051/0004-6361/201321529

    Article  Google Scholar 

  3. Einstein A (1916) The foundations of the theory of general relativity. German. AdP 354(7):769–822. https://doi.org/10.1002/andp.19163540702

    Article  Google Scholar 

  4. Greiner W, Müller B (2009) Gauge theory of weak interactions, 4th edn. Springer, Berlin, p 2

    Book  Google Scholar 

  5. Dodelson S (2003) Modern cosmology. Academic Press, Elsevier Science, Cambridge

    Google Scholar 

  6. Green MB, Schwarz JH, Witten E (1987) Superstring theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  7. Glashow SL (1961) Partial symmetries of weak interactions. Nucl Phys 22:579–588. https://doi.org/10.1016/0029-5582(61)90469-2

    Article  Google Scholar 

  8. Steven W (1967) A model of leptons. Phys Rev Lett 19:1264–1266. https://doi.org/10.1103/PhysRevLett.19.1264

    Article  Google Scholar 

  9. Salam A (1968) Elementary particle theory. Almqvist and Wiksell, Sweden

    Google Scholar 

  10. Srednicki M (2007) Quantum field theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  11. Rochester GD, Butler CC (1947) Evidence for the existence of newunstable elementary particles. Nature 160:855–857. https://doi.org/10.1038/160855a0

    Article  ADS  Google Scholar 

  12. Powell CF, Occhialini GPS (1947) Nuclear physics in photographs: tracks of charged particles in photographic emulsions. Clarendon Press, Oxford. http://cds.cern.ch/record/1030134

  13. Chamberlain O et al (1955) Observation of antiprotons. Phys Rev 100:947–950. https://doi.org/10.1103/PhysRev.100.947

    Article  ADS  Google Scholar 

  14. Hollik W (2010) Quantum field theory and the Standard Model. In: High-energy physics. Proceedings of 17th European School, ESHEP 2009, Bautzen, Germany, June 14–27, 2009. arXiv:1012.3883[hep-ph]

  15. Fock V (1932) Konfigurationsraum und zweite Quantelung. Zeitschrift für Physik 75(9):622–647. https://doi.org/10.1007/BF01344458

    Article  ADS  MATH  Google Scholar 

  16. Nakano T, Nishijima K (1953) Charge independence for V-particles*. Prog Theor Phys 10(5):581–582. https://doi.org/10.1143/PTP.10.581

    Article  ADS  Google Scholar 

  17. Englert F, Brout R (1964) Broken symmetry and the mass of gauge vector mesons. Phys Rev Lett 13:321–323. https://doi.org/10.1103/PhysRevLett.13.321

    Article  ADS  MathSciNet  Google Scholar 

  18. Higgs PW (1964) Broken symmetries and the masses of gauge bosons. Phys Rev Lett 13:508–509. https://doi.org/10.1103/PhysRevLett.13.508

    Article  ADS  MathSciNet  Google Scholar 

  19. Higgs PW (1966) Spontaneous symmetry breakdown without massless bosons. Phys Rev 145:1156–1163. https://doi.org/10.1103/PhysRev.145.1156

    Article  ADS  MathSciNet  Google Scholar 

  20. Cabibbo N (1963) Unitary symmetry and leptonic decays. Phys Rev Lett 10:531–533. https://doi.org/10.1103/PhysRevLett.10.531

    Article  ADS  Google Scholar 

  21. Kobayashi M, Maskawa T (1973) CP violation in the renormalizable theory of weak interaction. Prog Theor Phys 49:652–657. https://doi.org/10.1143/PTP.49.652

    Article  ADS  Google Scholar 

  22. Ellis J (2000) Standard model of particle physics. Encycl Astron Astrophys. Institute of Physics Publishing. https://doi.org/10.1888/0333750888/2104

  23. Schael S et al (2013) Electroweak measurements in electron-positron collisions at w-boson-pair energies at LEP. Phys Rep 532:119–244. https://doi.org/10.1016/j.physrep.2013.07.004

    Article  Google Scholar 

  24. Schael S et al (2006) Precision electroweak measurements on the Z resonance. Phys Rep 427:257–454. https://doi.org/10.1016/j.physrep.2005.12.006

    Article  Google Scholar 

  25. Arnison G et al (1983) Experimental observation of lepton pairs of invariant mass around 95 GeV/c2 at the CERN SPS collider. Phys Lett B 126:398–410. https://doi.org/10.1016/0370-2693(83)90188-0

    Article  ADS  Google Scholar 

  26. Abe F et al (1995) Observation of top quark production in \(\bar{p}p\) collisions. Phys Rev Lett 74:2626–2631. https://doi.org/10.1103/PhysRevLett.74.2626

  27. ATLAS Collaboration (2014) Measurement of the top-quark mass in \(t=\bar{t}\) events with lepton+jets final states in pp collisions at \(\sqrt{s} = 8 TeV\). Technical report CMS-PAS-TOP-14-001. Geneva: CERN

    Google Scholar 

  28. ATLAS, CDF, CMS and DØ Collaborations (2014) First combination of Tevatron and LHC measurements of the top-quark mass. ATLAS-CONF-2014-008

    Google Scholar 

  29. ATLAS Collaboration (2012) Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys Lett B 716:1. https://doi.org/10.1016/j.physletb.2012.08.020

    Article  ADS  Google Scholar 

  30. CMS Collaboration (2012) Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys Lett B 716:30. https://doi.org/10.1016/j.physletb.2012.08.021

    Article  ADS  Google Scholar 

  31. ATLAS Collaboration (2013) Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC. Phys Lett B 726:88. https://doi.org/10.1016/j.physletb.2014.05.011

    Article  ADS  Google Scholar 

  32. ATLAS Collaboration (2014) Measurement of the Higgs boson mass from the \(H\rightarrow \gamma \gamma \) and \(H \rightarrow ZZ^{\ast }4 \ell \) channels in pp collisions at center-of-massenergies of 7 and 8 TeV with the ATLAS detector. Phys Rev D 90:052004. https://doi.org/10.1103/PhysRevD.90.052004

  33. ATLAS Collaboration (2012) Coupling properties of the new Higgs-like boson observed with the ATLAS detector at the LHC. ATLAS-CONF-2012-127. https://cds.cern.ch/record/1476765

  34. ATLAS Collaboration (2012) Updated results and measurements of properties of the new Higgs-like particle in the four lepton decay channel with the ATLAS detector. ATLAS-CONF-2012-169. https://cds.cern.ch/record/1499628

  35. ATLAS Collaboration (2013) Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 \(fb^{1}\) of proton-proton collision data. ATLAS-CONF-2013-012. https://cds.cern.ch/record/1523698

  36. ATLAS Collaboration (2013) Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 \(fb^{1}\) of proton-proton collision data. ATLAS-CONF-2013-013. https://cds.cern.ch/record/1523699

  37. ATLAS Collaboration (2013) Measurements of the properties of the Higgs-like boson in the \(WW^(\ast )\rightarrow \ell \nu \nu \) decay channel with the ATLAS detector using 25 \(fb^{1}\) of proton-proton collision data. ATLAS-CONF-2013-030. https://cds.cern.ch/record/1527126

  38. ATLAS Collaboration (2013) Study of the spin properties of the Higgs-like boson in the \(H \rightarrow WW(\ast ) \rightarrow e \nu \mu \nu \) channel with 21 \(fb^{1}\) of \(\sqrt{s} = 8 TeV\) data collected with the ATLAS detector. ATLAS-CONF-2013-031. https://cds.cern.ch/record/1527127

  39. ATLAS Collaboration (2016) Study of the Higgs boson properties and search for high-mass scalar resonances in the \(H \rightarrow ZZ^{\ast }\rightarrow 4\ell \) decay channel at \(\sqrt{s} = 13 TeV\) with the ATLAS detector. ATLAS-CONF-2016-079. https://cds.cern.ch/record/2206253

  40. ATLAS Collaboration (2017) Measurement of the Higgs boson coupling properties in the \(H\rightarrow ZZ^{\ast }\rightarrow 4 \ell \) decay channel at \(\sqrt{s} = 13 TeV\) with the ATLAS detector. ATLAS-CONF-2017-043. https://cds.cern.ch/record/2273849

  41. ATLAS Collaboration (2017) Measurements of Higgs boson properties in the diphoton decay channel with 36.1 \(fb^{-1}\) pp collision data at the center-of-mass energy of \(13 TeV\) with the ATLAS detector. ATLAS-CONF-2017-045. https://cds.cern.ch/record/2273852

  42. CMS Collaboration (2014) Observation of the diphoton decay of the Higgs boson and measurement of its properties. Eur Phys J C 74:3076. https://doi.org/10.1140/epjc/s10052-014-3076-z

    Article  Google Scholar 

  43. CMS Collaboration (2014) Measurement of the properties of a Higgs boson in the four-lepton final state. Phys Rev D 89:092007. https://doi.org/10.1103/PhysRevD.89.092007

    Article  ADS  Google Scholar 

  44. CMS Collaboration (2014) Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states. JHEP 01:096. https://doi.org/10.1007/JHEP01(2014)096

    Article  ADS  Google Scholar 

  45. CMS Collaboration (2017) Measurements of properties of the Higgs boson decaying into the four-lepton final state in \(pp\) collisions at \(\sqrt{s} = 13 TeV\). JHEP 11:047. https://doi.org/10.1007/JHEP11(2017)047

  46. Baak M, Kogler R (2013) The global electroweak standard model fit after the Higgs discovery. In: Proceedings of 48th Rencontres de Moriond on Electroweak Interactions and Unified Theories: La Thuile, Italy, March 2–9, pp 349–358. arXiv: 1306.0571[hep-ph]

  47. ATLAS Collaboration (2018) Measurement of the W-boson mass in pp collisions at \(\sqrt{s} = 7 TeV\) with the ATLAS detector. Eur Phys J C 78:110. https://doi.org/10.1140/epjc/s10052-017-5475-4

  48. Forero DV, Tortola M, Valle JWF (2012) Global status of neutrino oscillation parameters after Neutrino-2012. Phys Rev D 86:073012. https://doi.org/10.1103/PhysRevD.86.073012

    Article  ADS  Google Scholar 

  49. Zwicky F (1933) Spectral displacement of extra galactic nebulae. Helv Phys Acta 6:110–127

    ADS  MATH  Google Scholar 

  50. Begeman KG, Broeils AH, Sanders RH (1991) Extended rotation curves of spiral galaxies: dark haloes and modified dynamics. Mon Not R Astron Soc 249:523

    Article  ADS  Google Scholar 

  51. Komatsu E et al (2009) Five-year wilkinson microwave anisotropy probe observations: cosmological interpretation. Astrophys J 180(2):330

    Article  Google Scholar 

  52. Bertone G, Hooper D, Silk J (2005) Particle dark matter: evidence, candidates and constraints. Phys Rep 405:279–390. https://doi.org/10.1016/j.physrep.2004.08.031

    Article  ADS  Google Scholar 

  53. Feng JL (2010) Dark matter candidates from particle physics and methods of detection. Annu Rev Astron Astrophys 48(1):495–545. https://doi.org/10.1146/annurev-astro-082708-101659

    Article  ADS  Google Scholar 

  54. Frieman J, Turner M, Huterer D (2008) Dark energy and the accelerating universe. Ann Rev Astron Astrophys 46:385–432. https://doi.org/10.1146/annurev.astro.46.060407.145243

    Article  ADS  Google Scholar 

  55. Sakharov AD (1967) Violation of CP invariance, asymmetry, and baryon asymmetry of the universe. Pisma Zh Eksp Teor Fiz 5:32–35. https://doi.org/10.1070/PU1991v034n05ABEH002497

    Article  Google Scholar 

  56. Cline JM (2000) Status of electroweak phase transition and baryogenesis. Pramana 55:33–42. https://doi.org/10.1007/s12043-000-0081-6

    Article  ADS  Google Scholar 

  57. CMS Collaboration (2015) Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV. Eur Phys J C 75:212. https://doi.org/10.1140/epjc/s10052-015-3351-7

    Article  ADS  Google Scholar 

  58. Burdman G (2007) New solutions to the hierarchy problem. Braz J Phys 37:506–513. https://doi.org/10.1590/S0103-97332007000400006

    Article  ADS  Google Scholar 

  59. Hooft G et al (1980) Recent developments in gauge theories. In: Nato advanced study institute, Cargese, France, August 26–September 8, 1979, vol. 59

    Google Scholar 

  60. Harris PG et al (1999) New experimental limit on the electric dipole moment of the neutron. Phys Rev Lett 82:904–907. https://doi.org/10.1103/PhysRevLett.82.904

    Article  ADS  Google Scholar 

  61. Pospelov M, Ritz A (2005) Electric dipole moments as probes of new physics. Ann Phys 318:119–169. https://doi.org/10.1016/j.aop.2005.04.002

    Article  ADS  MATH  Google Scholar 

  62. Kim JE, Carosi G (2010) Axions and the strong CP problem. Rev Mod Phys 82:557–602. https://doi.org/10.1103/RevModPhys.82.557

    Article  ADS  Google Scholar 

  63. Gross DJ, Wilczek F (1973) Ultraviolet behavior of non-abelian gauge theories. Phys Rev Lett 30:1343–1346. https://doi.org/10.1103/PhysRevLett.30.1343

    Article  ADS  Google Scholar 

  64. David Politzer H (1974) Asymptotic freedom: an approach to strong interactions. Phys Rep 14:129–180. https://doi.org/10.1016/0370-1573(74)

    Article  ADS  Google Scholar 

  65. de Boer W (1994) Grand unified theories and supersymmetry in particle physics and cosmology. Prog Part Nucl Phys 33:201–302. https://doi.org/10.1016/0146-6410(94)90045-0

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Maximilian Köhler .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Köhler, N.M. (2019). The Standard Model of Particle Physics. In: Searches for the Supersymmetric Partner of the Top Quark, Dark Matter and Dark Energy at the ATLAS Experiment. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-25988-4_2

Download citation

Publish with us

Policies and ethics