Skip to main content

Pathological Consequences of Vascular Alterations in the Eye

  • Chapter
  • First Online:
Book cover Ocular Fluid Dynamics

Abstract

This chapter reviews the abundant evidence of correlations between vascular alterations and ocular diseases. In particular, we discuss retinal diseases, including age-related macular degeneration, diabetic retinopathy and retinal vessel occlusions, glaucoma, and non-arteritic ischemic optic neuropathy. Current inconsistencies among studies and outstanding controversial questions are emphasized to bring the reader up to date with respect to the main challenges in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aiello LP, Northrup JM, Keyt BA, et al. Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol. 1995;113:1538–154.

    Article  Google Scholar 

  2. Albert DM, Miller JW, Azar DT, Blodi BA. Albert & Jakobiec's Principles & Practice of Ophthalmology. 3rd ed. Philadelphia, PA: Saunders Elsevier; 2008.

    Google Scholar 

  3. Aminoff MJ, Greenberg DA, Simon RP. Neuro-Ophthalmic Disorders. In: Clinical Neurology, 9e New York, NY: McGraw-Hill; 2015.

    Google Scholar 

  4. Arnold AC, Hepler RS. Fluorescein angiography in acute nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol. 1994 Feb 15; 117(2):222-30.

    Article  Google Scholar 

  5. Atkins et al. Treatment of Nonarteritic Anterior Ischemic Optic Neuropathy. Surv Ophthalmol. 2010 Jan-Feb; 55(1): 47–63.

    Article  Google Scholar 

  6. Augstburger E, Zéboulon P, Keilani C, et al. Quantitative analysis of optical coherence tomographic angiography (OCT-A) in patients with non-arteritic anterior ischemic optic neuropathy (NAION) corresponds to visual function. PLoS One. 2018 Jun 28;13(6):e0199793.

    Article  Google Scholar 

  7. Bertram B, Hoberg A, Wolf S. et al Videofluoresceinangiographic findings in acute anterior ischemic optic neuropathy. Klin Mbl Augenheilk 1991199419–423.

    Google Scholar 

  8. Boeri D, Maiello M, Lorenzi M. Increased prevalence of microthromboses in retinal capillaries of diabetic individuals. Diabetes. 2001;50(6):1432.

    Article  Google Scholar 

  9. Bonomi L, Marchini G, Marraffa M, et al. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology. 2000 Jul;107(7):1287-93.

    Article  Google Scholar 

  10. Bose S, Piltz JR, Breton ME. Nimodipine, a centrally active calcium antagonist, exerts a beneficial effect on contrast sensitivity in patients with normal-tension glaucoma and in control subjects. Ophthalmology. 1995 Aug;102(8):1236-41.

    Article  Google Scholar 

  11. Boulton M, Foreman D, Williams G, McLeod D. VEGF localisation in diabetic retinopathy. Br J Ophthalmol. 1998;82(5):561.

    Article  Google Scholar 

  12. Bowers DK, Finkelstein D, Wolff SM, Green WR. Branch retinal vein occlusion. A clinicopathologic case report. Retina. 1987;7(4):252.

    Article  Google Scholar 

  13. Bowling B. Kanski’s Clinical Ophthalmology. Eighth Edition. Edinburgh: Elsevier; 2016. 13: Retinal vascular disease; 519-577.

    Google Scholar 

  14. Butt Z, O'Brien C, McKillop G, et al. Color Doppler imaging in untreated high- and normal-pressure open-angle glaucoma. Invest. Ophthalmol. Vis. Sci. 1997;38(3):690-696.

    Google Scholar 

  15. Centers for Disease Control and Prevention. 2003 National Diabetes Fact Sheet. http://www.cdc.gov/diabetes/pubs/estimates.htm#complications (Accessed on March 28, 2008).

  16. Channa R, Sophie R, Bagheri S, et al. Regression of choroidal neovascularization results in macular atrophy in anti-vascular endothelial growth factor-treated eyes. Am J Ophthalmol. 2015;159:9-19.

    Article  Google Scholar 

  17. Chiaravalli G. A virtual laboratory for retinal physiology: a theoretical study of retinal oxygenation in healthy and disease. Master’s thesis, Politecnico di Milano (Italy). Master in Engineering Physics, final examination held on 12/20/2018. Main Advisor: R. Sacco (Mathematics, Politecnico di Milano). Co-advisor: G. Guidoboni.

    Google Scholar 

  18. Choi j, Kim KH, Jeong J et al. Circadian Fluctuation of Mean Ocular Perfusion Pressure Is a Consistent Risk Factor for Normal-Tension Glaucoma. Invest. Ophthalmol. Vis. Sci. 2007;48(1):104-111.

    Article  Google Scholar 

  19. Chong NH, Keonin J, Luthert PJ, et al. Decreased thickness and integrity of the macular elastic layer of Bruch's membrane correspond to the distribution of lesions associated with age-related macular degeneration. Am J Pathol. 2005;166:241–251.

    Article  Google Scholar 

  20. Ciulla TA, Harris A, Kagemann L, et al. Choroidal perfusion perturbations in non-neovascular age related macular degeneration. Br J Ophthalmol. 2002 Feb;86(2):209-13.

    Article  Google Scholar 

  21. Ciulla TA, Harris A, Martin BJ. Ocular Perfusion and age-related macular degeneration. Acta Ophthalmol Scand. 2001 Apr;79(2):108-15.

    Article  Google Scholar 

  22. Collignon-Robe NJ, Feke GT, Rizzo JF 3rd. Optic nerve head circulation in nonarteritic anterior ischemic optic neuropathy and optic neuritis. Ophthalmology. 2004 Sep; 111(9):1663-72.

    Article  Google Scholar 

  23. Costa V, Harris A, Anderson D, et al. Ocular perfusion pressure in glaucoma. Acta Ophthalmol. 2014;92(4):252-66.

    Article  Google Scholar 

  24. Cugati S, Wang JJ, Rochtchina E, Mitchell P. Ten-year incidence of retinal vein occlusion in an older population: the Blue Mountains Eye Study. Arch Ophthalmol. 2006;124(5):726.

    Article  Google Scholar 

  25. Diabetic Retinopathy Study Research Group. Preliminary report on effects of photocoagulation therapy Am J Ophthalmol, 81 (1976), pp. 383-396.

    Google Scholar 

  26. Do DV, Gower EW, Cassard SD, et al. Detection of new-onset choroidal neovascularization using optical coherence tomography: the AMD DOC study. Ophthalmology 2012;119:771-778.

    Article  Google Scholar 

  27. Do DV. Detection of new-onset choroidal neovascularization. Curr Opin Ophthalmol. 2013;24:224-227.

    Article  Google Scholar 

  28. Doucette LP, Rasnitsyn A, Seifi M, Walter MA. The interactions of genes, age, and environment in glaucoma pathogenesis. Surv Ophthalmol. 2015;60(4):310–26.

    Article  Google Scholar 

  29. Early Treatment Diabetic Retinopathy Study Research Group. Early treatment diabetic retinopathy study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology, 98 (1991), pp. 741-756.

    Google Scholar 

  30. Ehrlich R, Kheradiya NS, Winston DM, et al. Age-related ocular vascular changes. Graefes Arch Clin Exp Ophthalmol. 2009;247(5):583–91.

    Article  Google Scholar 

  31. Embleton SJ, Hosking SL, Roff Hilton EJ, Cunliffe IA. Effect of senescence on ocular blood flow in the retina, neuroretinal rim and lamina cribrosa, using scanning laser Doppler flowmetry. Eye (Lond). 2002 Mar;16(2):156-62.

    Article  Google Scholar 

  32. Emre M, Orgül S, Gugleta K, Flammer J. Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation. Br J Ophthalmol. 2004 May; 88(5): 662–666.

    Article  Google Scholar 

  33. Engin KN, Engin G, Kucuksahin H, et al. Clinical evaluation of the neuroprotective effect of alpha-tocopherol against glaucomatous damage. Eur J Ophthalmol. 2007 Jul-Aug;17(4):528-33.

    Article  Google Scholar 

  34. Evans DW, Harris A, Garrett M, et al. Glaucoma patients demonstrate faulty autoregulation of ocular blood flow during posture change. Br J Ophthalmol. 1999;83(7):809-13.

    Article  Google Scholar 

  35. Farecki ML, Gutfleisch M, Faatz H, et al. Characteristics of type 1 and 2 CNV in exudative AMD in OCT-Angiography. Graefes Arch Clin Exp Ophthalmol. 2017;255:913-921.

    Article  Google Scholar 

  36. Flammer J, Orgul S, Costa V, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359-93.

    Article  Google Scholar 

  37. Flammer J, Pache M, Resink T. Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Prog Retin Eye Res. 2001 May;20(3):319-49.

    Article  Google Scholar 

  38. Fraser CE, D’Amico DJ. Diabetic retinopathy: Classification and clinical features. Mulder JE, ed. UpToDate. Waltham, MA: UpToDate Inc.

    Google Scholar 

  39. Friedman DS, O'Colmain BJ, Munoz B, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004;122: 564-572.

    Article  Google Scholar 

  40. Friedman E, Ivry M, Ebert E, et al. Increased Scleral Rigidity and Age-related Macular Degeneration. Ophthalmology. 1989 Jan;96(1):104-8.

    Article  Google Scholar 

  41. Friedman E, Krupsky S, Lane AM, et al. Ocular blood flow velocity in age-related macular degeneration. Ophthalmology. 1995 Apr;102(4):640-6.

    Article  Google Scholar 

  42. Friedman E. A Hemodynamic Model of the Pathogenesis of Age-related Macular Degeneration. Am J Ophthalmol. 1997 Nov;124(5):677-82.

    Article  Google Scholar 

  43. Gaier ED, Wang M, Gilbert AL, et al. Quantitative analysis of optical coherence tomographic angiography (OCT-A) in patients with non-arteritic anterior ischemic optic neuropathy (NAION) corresponds to visual function. PLoS One. 2018 Jun 28;13(6):e0199793.

    Article  Google Scholar 

  44. Gasser P, Flammer J. Blood-cell velocity in the nailfold capillaries of patients with normal-tension and high-tension glaucoma. Am J Ophthalmol. 1991 May 15;111(5):585-8.

    Article  Google Scholar 

  45. Ghasemi Falavarjani K, Phasukkijwatana N, Freund KB, et al. En Face Optical Coherence Tomography Analysis to Assess the Spectrum of Perivenular Ischemia and Paracentral Acute Middle Maculopathy in Retinal Vein Occlusion. Am J Ophthalmol. 2017 May;177:131-138.

    Article  Google Scholar 

  46. González-López A, Ortega M, Penedo MG, Charlón P. Automatic Vessel Shade-Robust Segmentation of Retinal Layers in OCT Images. Stud Health Technol Inform. 2014;207:47-54.

    Google Scholar 

  47. Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002 Jun;120(6):714-20; discussion 829-30.

    Article  Google Scholar 

  48. Grunwald JE, Hariprasad SM, DuPont J, et al. Foveolar choroidal blood flow in age-related macular degeneration. Invest Ophthalmol Vis Sci. 1998 Feb;39(2):385-90.

    Google Scholar 

  49. Grunwald JE, Metelitsina TI, Dupont JC, et al. Reduced foveolar choroidal blood flow in eyes with increasing AMD severity. Invest Ophthalmol Vis Sci. 2005 Mar;46(3):1033-8.

    Article  Google Scholar 

  50. Haefliger IO, Meyer P, Flammer J, Lüscher TF. The vascular endothelium as a regulator of the ocular circulation: a new concept in ophthalmology?. Surv Ophthalmol. 1994;39:123–132.

    Article  Google Scholar 

  51. Haefliger IO, Zschauer A, Anderson DR. Relaxation of retinal pericyte contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway. Invest Ophthalmol Vis Sci. 1995;35:991–997.

    Google Scholar 

  52. Hamard P, Hamard H, Dufaux J, Quesnot S. Optic nerve head blood flow using a laser Doppler velocimeter and haemorheology in primary open angle glaucoma and normal pressure glaucoma. Br J Ophthalmol. 1994 Jun;78(6):449-53.

    Article  Google Scholar 

  53. Harris A, Harris M, Biller J, et al. Aging affects the retrobulbar circulation differently in women and men. Arch Ophthalmol. 2000 Aug;118(8):1076-80.

    Article  Google Scholar 

  54. Harris A, Rechtman E, Siesky B, et al. The role of optic nerve blood flow in the pathogenesis of glaucoma. Ophthalmol Clin North Am. 2005;18(3):345-53, v.

    Article  Google Scholar 

  55. Hayreh SS. Non-arteritic anterior ischemic optic neuropathy versus cerebral ischemic stroke. Graefes Arch Clin Exp Ophthalmol (2012) 250: 1255-60.

    Article  Google Scholar 

  56. Hayreh SS. Posterior ciliary artery circulation in health and disease: the Weisenfeld lecture. Invest Ophthalmol Vis Sci. 2004 Mar;45(3):749-57; 748.

    Article  Google Scholar 

  57. Hayreh SS. Posterior ischaemic optic neuropathy: clinical features, pathogenesis, and management. Eye (Lond). 2004;18(11):1188.

    Article  Google Scholar 

  58. Hernandez MR, Miao H, Lukas T. Astrocytes in glaucomatous optic neuropathy. Prog Brain Res. 2008;173:353-73.

    Article  Google Scholar 

  59. Hollows FC, Graham PA. Intra-ocular pressure, glaucoma, and glaucoma suspects in a defined population. Br J Ophthalmol. 1966;50(10):570-86.

    Article  Google Scholar 

  60. Hussain AA, Starita C, Marshall J. Transport characteristics of aging human Bruch's membrane: implications for age-related macular degeneration. In: Ioseliani O, editor. Focus on Macular Degeneration Research (AMD) Nova Biomedical Books; 2004. pp. 59–113.

    Google Scholar 

  61. Hyman L. Epidemiology of eye disease in the elderly. Eye (Lond). 1987;1 ( Pt 2):330.

    Article  Google Scholar 

  62. Iroku-Malize T, Kirsch S. Eye Conditions in Older Adults: Age-Related Macular Degeneration. FP Essent. 2016;445:24-8.

    Google Scholar 

  63. Jaulim A, Ahmed B, Khanam T, Chatziralli IP. Branch retinal vein occlusion: epidemiology, pathogenesis, risk factors, clinical features, diagnosis, and complications. An update of the literature. Retina. 2013 May;33(5):901-10.

    Article  Google Scholar 

  64. Jia Y, Bailey ST, Wilson DJ, et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology. 2014;121:1435-44.

    Article  Google Scholar 

  65. Jia Y, Wei E, Wang X, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121(7):1322–32.

    Article  Google Scholar 

  66. Kaiser HJ, Schoetzau A, Stumpfig D, Flammer J. Blood-flow velocities of the extraocular vessels in patients with high-tension and normal-tension primary open-angle glaucoma. Am J Ophthalmol 1997; 123: 320-327.

    Article  Google Scholar 

  67. Karia N. Retinal vein occlusion: pathophysiology and treatment options. Clin Ophthalmol. 2010; 4: 809–816.

    Article  Google Scholar 

  68. Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002 Jun;120(6):701-13; discussion 829-30.

    Article  Google Scholar 

  69. Katsura Y, Okano T, Noritake M, et al. Hepatocyte growth factor in vitreous fluid of patients with proliferative diabetic retinopathy and other retinal disorders. Diabetes Care. 1998;21(10):1759.

    Article  Google Scholar 

  70. Kaup M, Plange N, Arend KO, Remky A. Retrobulbar haemodynamics in non-arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol. 2006 Nov; 90(11): 1350–1353.

    Article  Google Scholar 

  71. Kitazawa Y, Shirai H, Go FJ. The effect of Ca2+-antagonist on visual field in low-tension glaucoma. Graefes Arch Clin Exp Ophthalmol 1989; 227: 408-412.

    Article  Google Scholar 

  72. Klaver JH, Greve EL, Goslinga H, et al. Blood and plasma viscosity measurements in patients with glaucoma. Br J Ophthalmol. 1985 Oct;69(10):765-70.

    Article  Google Scholar 

  73. Kohner EM, Patel V, Rassam SM. Role of blood flow and impaired autoregulation in the pathogenesis of diabetic retinopathy. Diabetes. 1995;44(6):603.

    Article  Google Scholar 

  74. Koseki N, Araie M, Yamagami J, et al. Effects of oral brovincamine on visual field damage in patients with normal-tension glaucoma with low-normal intraocular pressure. J Glaucoma. 1999 Apr;8(2):117-23.

    Article  Google Scholar 

  75. Kotsolis AI, Killian FA, Ladas ID, Yannuzzi LA. Fluorescein angiography and optical coherence tomography concordance for choroidal neovascularization in multifocal choroiditis. Br J Ophthalmol. 2010;94:1506-1508.

    Article  Google Scholar 

  76. Leske MC, Wu SY, Nemesure B, Hennis A. Incident open-angle glaucoma and blood pressure. Arch Ophthalmol. 2002 Jul;120(7):954-9.

    Article  Google Scholar 

  77. Lim LS, Mitchell P, Seddon JM, et al. Age-related macular degeneration. Lancet 2012;379:1728-1738.

    Article  Google Scholar 

  78. Lin WJ, Kuang HY. Oxidative stress induces autophagy in response to multiple noxious stimuli in retinal ganglion cells. Autophagy. 2014;10(10):1692-701.

    Article  Google Scholar 

  79. Liu L, Jia Y, Takusagawa HL, et al. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. JAMA ophthalmology. 2015;133(9):1045–52.

    Article  Google Scholar 

  80. Martinet V, Guigui B, Glacet-Bernard A, et al. Macular edema in central retinal vein occlusion: correlation between optical coherence tomography, angiography and visual acuity. Int Ophthalmol. 2012 Aug;32(4):369-77.

    Article  Google Scholar 

  81. Martinez A. Retrobulbar Ocular Blood Flow Evaluation in Open-Angle Glaucoma. In: Ferreras A. (eds) Glaucoma Imaging. Springer, Cham, 2016.

    Google Scholar 

  82. Mizutani M, Kern TS, Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest 1996;97:2883-2890.

    Article  Google Scholar 

  83. Moore D, Harris A, WuDunn D, et al. Dysfunctional regulation of ocular blood flow: a risk factor for glaucoma? Clin Ophthalmol. 2008;2(4):849–61.

    Google Scholar 

  84. Moult E, Choi W, Waheed NK, et al. Ultrahigh-speed swept-source OCT angiography in exudative AMD. Ophthalmic Surg Lasers Imaging Retina. 2014;45:496-505.

    Article  Google Scholar 

  85. Munk MR, Ceklic L, Ebneter A, et al. Macular atrophy in patients with long-term anti-VEGF treatment for neovascular age-related macular degeneration. Acta Ophthalmol. 2016;94:e757-e764.

    Article  Google Scholar 

  86. Netland PA, Chaturvedi N, Dreyer EB. Calcium channel blockers in the management of low-tension and open-angle glaucoma. Am J Ophthalmol. 1993 May 15;115(5):608-13.

    Article  Google Scholar 

  87. Novais EA, Adhi M, Moult EM, et al. Choroidal Neovascularization Analyzed on Ultrahigh-Speed Swept-Source Optical Coherence Tomography Angiography Compared to Spectral-Domain Optical Coherence Tomography Angiography. Am J Ophthalmol. 2016;164:80-8.

    Article  Google Scholar 

  88. Nowak JZ. AMD--the retinal disease with an unprecised etiopathogenesis: in search of effective therapeutics. Acta Pol Pharm. 2014;71:900-16.

    Google Scholar 

  89. Oellers P, Hahn P, Fekrat S. Ryan’s Retina. Sixth Edition. Edinburgh: Elsevier; 2018. 57: Central Retinal Vein Occlusion; 1166-1179.

    Google Scholar 

  90. Osborne NN. Mitochondria: their role in ganglion cell death and survival in primary open angle glaucoma. Exp Eye Res. 2010;90(6):750-7.

    Article  Google Scholar 

  91. Owen CG, Jarrar Z, Wormald R, et al. The estimated prevalence and incidence of late stage age related macular degeneration in the UK. Br J Ophthalmol. 2012;96:752-6.

    Article  Google Scholar 

  92. Pascolini D, Mariotti SP, Pokharel GP, et al. 2002 global update of available data on visual impairment: a compilation of population-based prevalence studies. Ophthalmic Epidemiol. 2004;11:67-115.

    Article  Google Scholar 

  93. Pournaras CJ, Logean E, Riva CE, et al. Regulation of subfoveal choroidal blood flow in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2006 Apr;47(4):1581-6.

    Article  Google Scholar 

  94. Prada D, Harris A, Guidoboni G, et al. Autoregulation and neurovascular coupling in the optic nerve head. Surv Ophthalmol. 2016 Mar-Apr;61(2):164-86.

    Article  Google Scholar 

  95. Quaranta L, Bettelli S, Uva MG, et al. Effect of Ginkgo biloba extract on preexisting visual field damage in normal tension glaucoma. Ophthalmology. 2003 Feb;110(2):359-62; discussion 362-4.

    Article  Google Scholar 

  96. Querques G, Miere A, Souied EH. Optical Coherence Tomography Angiography Features of Type 3 Neovascularization in Age-Related Macular Degeneration. Dev Ophthalmol. 2016;56:57-61.

    Article  Google Scholar 

  97. Quigley HA, West SK, Rodriguez J, et al. The prevalence of glaucoma in a population-based study of Hispanic subjects: Proyecto VER. Arch Ophthalmol. 2001 Dec;119(12):1819-26.

    Article  Google Scholar 

  98. Quigley HA. Neuronal death in glaucoma. Prog Retin Eye Res. 1999;18(1):39-57

    Article  Google Scholar 

  99. Ramrattan RS, van der Schaft TL, Mooy CM, et al. Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci. 1994 May;35(6):2857-64.

    Google Scholar 

  100. Ren R, Jonas JB, Tian G, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology. 2010;117(2):259–66.

    Article  Google Scholar 

  101. Resch H, Garhofer G, Fuchsjäger-Mayrl G, et al. Endothelial dysfunction in glaucoma. Acta Ophthalmol. 2009 Feb;87(1):4-12.

    Article  Google Scholar 

  102. Ropper AH, Samuels MA, Klein JP. Chapter 13. Disturbances of Vision. In: Adams & Victor's Principles of Neurology, 10e New York, NY: McGraw-Hill; 2014.

    Google Scholar 

  103. Rosen RB, Andrade Romo JS, Krawitz BD, et al. Earliest Evidence of Preclinical Diabetic Retinopathy Revealed using OCT Angiography (OCTA) Perfused Capillary Density. Am J Ophthalmol. 2019 Jan 25. pii: S0002-9394(19)30025-X. doi: 10.1016/j.ajo.2019.01.012. [Epub ahead of print].

    Article  Google Scholar 

  104. Ross RD, Barofsky JM, Cohen G, et al. Presumed macular choroidal watershed vascular filling, choroidal neovascularization, and systemic vascular disease in patients with age-related macular degeneration. Am J Ophthalmol. 1998 Jan;125(1):71-80.

    Article  Google Scholar 

  105. Ryan S, Schachat A, Wilkinson C, et al. Retina. 5th ed. Philadelphia, PA: Saunders Elsevier; 2013.

    Google Scholar 

  106. Sawada A, Kitazawa Y, Yamamoto T, et al. Prevention of visual field defect progression with brovincamine in eyes with normal-tension glaucoma. Ophthalmology. 1996 Feb;103(2):283-8.

    Article  Google Scholar 

  107. Seknazi D, Coscas F, Sellam A, et al. OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IN RETINAL VEIN OCCLUSION: Correlations Between Macular Vascular Density, Visual Acuity, and Peripheral Nonperfusion Area on Fluorescein Angiography. Retina. 2018 Aug;38(8):1562-1570.

    Article  Google Scholar 

  108. Shah R, Wormald RP. Glaucoma. BMJ Clin Evid. 2011.

    Google Scholar 

  109. Shirinifard A, Glazier JA, Swat M, et al. Adhesion Failures determine the pattern of choroidal neovascularization in the eye: A computer simulation study. PLoS Comput Biol. 2012;8(5):e1002440. doi: https://doi.org/10.1371/journal.pcbi.1002440. Epub 2012 May 3.

    Article  Google Scholar 

  110. Siaudvytyte L, Januleviciene I, Daveckaite A, et al. Neuroretinal rim area and ocular haemodynamic parameters in patients with normal-tension glaucoma with differing intracranial pressures. Br J Ophthalmol. 2016 Aug;100(8):1134-8.

    Article  Google Scholar 

  111. Souied EH, El Ameen A, Semoun O, et al. Optical Coherence Tomography Angiography of Type 2 Neovascularization in Age-Related Macular Degeneration. Dev Ophthalmol. 2016;56:52-6.

    Article  Google Scholar 

  112. Spraul CW, Grossniklaus HE. Characteristics of drusen and Bruch's membrane in postmortem eyes with age-related macular degeneration. Arch Ophthalmol. 1997;115:267–273.

    Article  Google Scholar 

  113. Spraul CW, Lang GE, Grossniklaus HE, Lang GK. Histologic and morphometric analysis of the choroid, Bruch's membrane, and retinal pigment epithelium in postmortem eyes with age-related macular degeneration and histologic examination of surgically excised choroidal neovascular membranes. Surv Ophthalmol. 1999;44:10–32.

    Article  Google Scholar 

  114. Su D, Garg S. The retinal function imager and clinical applications. Eye Vis (Lond). 2018 Aug 12;5:20. doi: 10.1186/s40662-018-0114-1. eCollection 2018.

    Google Scholar 

  115. Suh MH, Zangwill LM, Manalastas PI, et al. Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects. Ophthalmology. 2016;123(11):2309–17.

    Article  Google Scholar 

  116. Takusagawa HL, Liu L, Ma KN, et al. Projection-Resolved Optical Coherence Tomography Angiography of Macular Retinal Circulation in Glaucoma. Ophthalmology. 2017;124(11):1589-1599.

    Article  Google Scholar 

  117. Talisa E, de Carlo BA, Marco A, et al. Spectral-Domain Optical Coherence Tomography Angiography of Choroidal Neovascularization. Ophthalmology 2015;122:1228-1238.

    Article  Google Scholar 

  118. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol. 2000;130(4):429-40.

    Google Scholar 

  119. Tielsch JM, Katz J, Sommer A, et al. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol. 1995 Feb;113(2):216-21.

    Article  Google Scholar 

  120. Topouzis F, Coleman AL, Harris A, et al. Association of blood pressure status with the optic disk structure in non-glaucoma subjects: the Thessaloniki Eye Study. Am J Ophthalmol. 2006;142(11):60–7.

    Article  Google Scholar 

  121. Topouzis F, Wilson MR, Harris A, et al. Association of open-angle glaucoma with perfusion pressure status in the Thessaloniki Eye Study. Am J Ophthalmol. 2013;155(5):843–51.

    Article  Google Scholar 

  122. Vasudevan SK, Gupta V, Crowston JG. Neuroprotection in glaucoma. Indian J Ophthalmol. 2011;59(Suppl):S102-13.

    Article  Google Scholar 

  123. Wang X, Jiang C, Ko T et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study Graefes Arch Clin Exp Ophthalmol (2015) 253: 1557-1564.

    Google Scholar 

  124. Xu L, Wang YX, Jonas JB. Ocular perfusion pressure and glaucoma: the Beijing Eye Study. Eye (Lond). 2009 Mar;23(3):734-6.

    Article  Google Scholar 

  125. Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma. Ophthalmology. 2016;123(12):2498–508.

    Article  Google Scholar 

  126. Yuzurihara D, Iijima H. Visual outcome in central retinal and branch retinal artery occlusion. Jpn J Ophthalmol. 2004;48(5):490.

    Article  Google Scholar 

  127. Zeng Y, Cao D, Yu H, et al. Early retinal neurovascular impairment in patients with diabetes without clinically detectable retinopathy. Br J Ophthalmol. 2019 Jan 23. pii: bjophthalmol-2018-313582. doi: 10.1136/bjophthalmol-2018-313582. [Epub ahead of print].

    Google Scholar 

  128. Zhu J, Merkle CW, Bernucci MT, et al. Can OCT Angiography Be Made a Quantitative Blood Measurement Tool? Appl Sci (Basel). 2017;7:687.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Prada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prada, D. et al. (2019). Pathological Consequences of Vascular Alterations in the Eye. In: Guidoboni, G., Harris, A., Sacco, R. (eds) Ocular Fluid Dynamics. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-25886-3_3

Download citation

Publish with us

Policies and ethics