Skip to main content

Fetal Programming of Adult Disease in a Translational Point of View

  • Chapter
  • First Online:
Adolescent Health and Wellbeing

Abstract

Prenatal development constitutes a critical time for shaping adult behavior, setting the basis for vulnerability or protection to disease in adulthood. According to a translational perspective, a wealth of information from human and animal studies has revealed that exposure to adverse conditions during fetal period may have a great impact on health not only in infancy and childhood but also in later life. Indeed, hostile intrauterine life can result in a series of coordinated biological responses aimed at enhancing the probability of survival or increasing risk and susceptibility of chronic degenerative disease. Regardless of the type stimulus, the nature and severity of the long-term effects due to fetal environment seem to be influenced by the timing of insults during gestation, because prenatal development is characterized by sensitive time windows in which organisms are more or less vulnerable to critical events. In this chapter, we explore the fetal origin hypothesis of adult chronic degenerative disease, from a translational point of view, according to the theories of the twentieth century and of the possible mechanisms involved in these long-term physiological/behavioral alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Khot UN, Khot MB, Bajzer CT, Sapp SK, Ohman EM, Brener SJ, Ellis SG, Lincoff AM, Topol EJ. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA. 2003;290:898–904.

    Article  PubMed  Google Scholar 

  3. Ferreira AJ. Emotional factors in prenatal environment. A review. J Nerv Ment Dis. 1965;141(1):108–18.

    Article  CAS  PubMed  Google Scholar 

  4. Barker DJ. Adult consequences of fetal growth restriction. Clin Obstet Gynecol. 2006;49(2):270–83.

    Article  PubMed  Google Scholar 

  5. Berenson GS, Srinivasan SR, Bao W, Newman WP, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults: the Bogalusa Heart Study. N Engl J Med. 1998;338:1650–6. https://doi.org/10.1056/NEJM199806043382302.

    Article  CAS  PubMed  Google Scholar 

  6. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1:1077–81.

    Article  CAS  PubMed  Google Scholar 

  7. Barker DJP. Fetal origins of coronary heart disease. BMJ. 1995;311:171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hales CN, Barker DJ. Type 2 (non-insulin dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35:595–601.

    Article  CAS  PubMed  Google Scholar 

  9. Eriksson JG, Forsén T, Tuomilehto J, Winter PD, Osmond C, Barker DJ. Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ. 1999;318(7181):427–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum Dev. 2006;82(8):485–91.

    Article  PubMed  Google Scholar 

  11. de Rooij SR, Painter RC, Phillips DI, et al. Hypothalamic- pituitary-adrenal axis activity in adults who were prenatally exposed to the Dutch famine. Eur J Endocrinol. 2006;155(1):153–60.

    Article  PubMed  CAS  Google Scholar 

  12. de Rooij SR, Wouters H, Yonker JE, Painter RC, Roseboom TJ. Prenatal undernutrition and cognitive function in late adulthood. Proc Natl Acad Sci U S A. 2010;107(39):16881–6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lane RH. Fetal programming, epigenetics, and adult onset disease. Clin Perinatol. 2014;41(4):815–31.

    Article  PubMed  Google Scholar 

  14. Schmatz M, Madan J, Marino T, Davis J. Maternal obesity: the interplay between inflammation, mother and fetus. J Perinatol. 2010;30(7):441–6.

    Article  CAS  PubMed  Google Scholar 

  15. Gaudet L, Ferraro ZM, Wen SW, Walker M. Maternal obesity and occurrence of fetal macrosomia: a systematic review and meta-analysis. Biomed Res Int. 2014;2014:640291.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gillman MW, Rifas-Shiman S, Berkey CS, Field AE, Colditz GA. Maternal gestational diabetes, birth weight, and adolescent obesity. Pediatrics. 2003;111(3):e221–6.

    Article  PubMed  Google Scholar 

  17. Sørensen HT, Sabroe S, Rothman KJ, Gillman M, Fischer P, Sørensen TI. Relation between weight and length at birth and body mass index in young adulthood: cohort study. BMJ. 1997;315(7116):1137.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bouret S, Levin BE, Ozanne SE. Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiol Rev. 2015;95(1):47e82.

    Article  CAS  Google Scholar 

  19. Sasson IE, Vitins AP, Mainigi MA, Moley KH, Simmons RA. Pre-gestational vs gestational exposure to maternal obesity differentially programs the offspring in mice. Diabetologia. 2015;58(3):615–24.

    Article  CAS  PubMed  Google Scholar 

  20. Baeten JM, Bukusi EA, Lambe M. Pregnancy complications and outcomes among overweight and obese nulliparous women. Am J Public Health. 2001;91(3):436–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thompson WR. Influence of prenatal maternal anxiety on emotionality in young rats. Science. 1957;125(3250):698–9.

    Article  CAS  PubMed  Google Scholar 

  22. Thompson WR, Watson J, Charlesworth WR. The effects of prenatal maternal stress on offspring behavior in rats. Psychol Monogr. 1962;76(38):1.

    Article  Google Scholar 

  23. Weinstock M. Prenatal stressors in rodents: effects on behavior. Neurobiol Stress. 2016;6:3–13.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Charil A, Laplante DP, Vaillancourt C, King S. Prenatal stress and brain development. Brain Res Rev. 2010;65(1):56–79.

    Article  PubMed  Google Scholar 

  25. Buynitsky T, Mostofsky DI. Restraint stress in biobehavioral research: recent developments. Neurosci Biobehav Rev. 2009;33(7):1089–98.

    Article  PubMed  Google Scholar 

  26. Głombik K, Stachowicz A, Ślusarczyk J, Trojan E, Budziszewska B, Suski M, Basta-Kaim A. Maternal stress predicts altered biogenesis and the profile of mitochondrial proteins in the frontal cortex and hippocampus of adult offspring rats. Psychoneuroendocrinology. 2015;60:151–62.

    Article  PubMed  CAS  Google Scholar 

  27. Jia N, Li Q, Sun H, Song Q, Tang G, Sun Q, Zhu Z. Alterations of group I mGluRs and BDNF associated with behavioral abnormity in prenatally stressed offspring rats. Neurochem Res. 2015;40(5):1074–82.

    Article  CAS  PubMed  Google Scholar 

  28. Xu J, Yang B, Yan C, Hu H, Cai S, Liu J, Shen X. Effects of duration and timing of prenatal stress on hippocampal myelination and synaptophysin expression. Brain Res. 2013;1527:57–66.

    Article  CAS  PubMed  Google Scholar 

  29. Aziz NA, Kendall DA, Pardon MC. Prenatal exposure to chronic mild stress increases corticosterone levels in the amniotic fluid and induces cognitive deficits in female offspring, improved by treatment with the antidepressant drug amitriptyline. Behav Brain Res. 2012;231(1):29–39.

    Article  PubMed  CAS  Google Scholar 

  30. Son GH, Geum D, Chung S, Kim EJ, Jo JH, Kim CM, Lee CJ. Maternal stress produces learning deficits associated with impairment of NMDA receptor-mediated synaptic plasticity. J Neurosci. 2006;26(12):3309–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weinstock M. The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev. 2008;32(6):1073–86.

    Article  CAS  PubMed  Google Scholar 

  32. Dong E, Dzitoyeva SG, Matrisciano F, Tueting P, Grayson DR, Guidotti A. Brain-derived neurotrophic factor epigenetic modifications associated with schizophrenia-like phenotype induced by prenatal stress in mice. Biol Psychiatry. 2015;77(6):589–96.

    Article  CAS  PubMed  Google Scholar 

  33. Ehrlich DE, Rainnie DG. Prenatal stress alters the development of socioemotional behavior and amygdala neuron excitability in rats. Neuropsychopharmacology. 2015;40(9):2135.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Van den Hove DLA, Leibold NK, Strackx E, Martinez-Claros M, Lesch KP, Steinbusch HWM, et al. Prenatal stress and subsequent exposure to chronic mild stress in rats; interdependent effects on emotional behavior and the serotonergic system. Eur Neuropsychopharmacol. 2014;24(4):595–607.

    Article  PubMed  CAS  Google Scholar 

  35. Yeh CM, Huang CC, Hsu KS. Prenatal stress alters hippocampal synaptic plasticity in young rat offspring through preventing the proteolytic conversion of pro-brain-derived neurotrophic factor (BDNF) to mature BDNF. J Physiol. 2012;590(4):991–1010.

    Article  CAS  PubMed  Google Scholar 

  36. Barbazanges A, Piazza PV, Le Moal M, Maccari S. Maternal glucocorticoid secretion mediates long-term effects of prenatal stress. J Neurosci. 1996;16(12):3943–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luoni A, Berry A, Calabrese F, Capoccia S, Bellisario V, Gass P, Riva MA. Delayed BDNF alterations in the prefrontal cortex of rats exposed to prenatal stress: preventive effect of lurasidone treatment during adolescence. Eur Neuropsychopharmacol. 2014;24(6):986–95.

    Article  CAS  PubMed  Google Scholar 

  38. Mastorci F, Vicentini M, Viltart O, Manghi M, Graiani G, Quaini F, Meerlo P, Nalivaiko E, Maccari S, Sgoifo A. Long-term effects of prenatal stress: changes in adult cardiovascular regulation and sensitivity to stress. Neurosci Biobehav Rev. 2009;33(2):191–203.

    Article  PubMed  Google Scholar 

  39. Symonds ME, Stephenson T, Gardner DS, Budge H. Long-term effects of nutritional programming of the embryo and fetus: mechanisms and critical windows. Reprod Fertil Dev. 2007;19:53–63.

    Article  PubMed  Google Scholar 

  40. Talge NM, Neal C, Glover V. Antenatal maternal stress and long-term effects on child neurodevelopment: how and why? J Child Psychol Psychiatry. 2007;48:245–61.

    Article  PubMed  Google Scholar 

  41. Smith JW, Seckl JR, Evans AT, et al. Gestational stress induces post-partum depression-like behaviour and alters maternal care in rats. Psychoneuroendocrinology. 2004;29:227–44.

    Article  CAS  PubMed  Google Scholar 

  42. Buitelaar JK, Huizink AC, Mulder EJ, de Medina PG, Visser GH. Prenatal stress and cognitive development and temperament in infants. Neurobiol Aging. 2003;24:53–60.

    Article  Google Scholar 

  43. Weinstock M. Alterations induced by gestational stress in brain morphology and behavior of the offspring. Prog Neurobiol. 2001;65:427–51.

    Article  CAS  PubMed  Google Scholar 

  44. Cottrell EC, Seckl JR. Prenatal stress, glucocorticoids and the programming of adult disease. Front Behav Neurosci. 2009;3:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Huizink AC, de Medina PG, Mulder EJ, Visser GH, Buitelaar JK. Psychological measures of prenatal stress as predictors of infant temperament. J Am Acad Child Adolesc Psychiatry. 2002;41(9):1078–85.

    Article  PubMed  Google Scholar 

  46. O’Connor TG, Caprariello P, Blackmore ER, et al. Prenatal mood disturbance predicts sleep problems in infancy and toddlerhood. Early Hum Dev. 2007;83:451–8.

    Article  PubMed  Google Scholar 

  47. O’Connor TG, Heron J, Golding J, et al. Maternal antenatal anxiety and children’s behavioral/emotional problems at 4 years. Report from the Avon Longitudinal Study of Parents and Children. Br J Psychiatry. 2002;180:502–8.

    Article  PubMed  Google Scholar 

  48. Loomans EM, van der Stelt O, van Eijsden M, et al. High levels of antenatal maternal anxiety are associated with altered cognitive control in five-year-old children. Dev Psychobiol. 2012;54:441–50.

    Article  PubMed  Google Scholar 

  49. Van den Bergh BR, Marcoen A. High antenatal maternal anxiety is related to ADHD symptoms, externalizing problems, and anxiety in 8- and 9-year-olds. Child Dev. 2004;75:1085–97.

    Article  PubMed  Google Scholar 

  50. Van den Bergh BR, Mennes M, Oosterlaan J, et al. High antenatal maternal anxiety is related to impulsivity during performance on cognitive tasks in 14- and 15-year-olds. Neurosci Biobehav Rev. 2005;29:259–69.

    Article  PubMed  Google Scholar 

  51. Laplante DP, Brunet A, Schmitz N, et al. Project ice storm: prenatal maternal stress affects cognitive and linguistic functioning in 5 1/2-yearold children. J Am Acad Child Adolesc Psychiatry. 2008;47:1063–72.

    Article  PubMed  Google Scholar 

  52. Huizink AC, Dick DM, Sihvola E, et al. Chernobyl exposure as stressor during pregnancy and behavior in adolescent offspring. Acta Psychiatr Scand. 2007;116:438–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McCreary JK, Metz GAS. Environmental enrichment as an intervention for adverse health outcomes of prenatal stress. Environ Epigenet. 2016;2(3):dvw013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Dolinoy DC. Epigenetic gene regulation: early environmental exposures. Pharmacogenomics. 2007;8(1):5–10.

    Article  CAS  PubMed  Google Scholar 

  55. Lillycrop KA, Burdge GC. Epigenetic mechanisms linking early nutrition to long term health. Best Pract Res Clin Endocrinol Metab. 2012;26:667–76.

    Article  PubMed  Google Scholar 

  56. Peyronnet J, et al. Long-lasting adverse effects of prenatal hypoxia on developing autonomic nervous system and cardiovascular parameters in rats. Pflugers Arch. 2002;443:858–65.

    Article  CAS  PubMed  Google Scholar 

  57. Blake KV, et al. Maternal cigarette smoking during pregnancy, low birth weight and subsequent blood pressure in early childhood. Early Hum Dev. 2000;57:137–47.

    Article  CAS  PubMed  Google Scholar 

  58. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8:253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stein AD, Lumey LH. The relationship between maternal and offspring birth weights after maternal prenatal famine exposure: the Dutch Famine Birth Cohort Study. Hum Biol. 2000;72:641–54.

    CAS  PubMed  Google Scholar 

  60. Edwards CE, Benediktsson R, Lindsay RS, Seckl JR. Dysfunction of the placental glucocorticoid barrier: a link between the fetal environment and adult hypertension? Lancet. 1993;341:355–7.

    Article  CAS  PubMed  Google Scholar 

  61. Brand SR, Engel SM, Canfield RL, Yehuda R. The effect of maternal PTSD following in utero trauma exposure on behavior and temperament in the 9-month-old infant. Ann N Y Acad Sci. 2006;1071:454–8.

    Article  PubMed  Google Scholar 

  62. Van den Bergh BR, Van CB, Smits T, et al. Antenatal maternal anxiety is related to HPA-axis dysregulation and self-reported depressive symptoms in adolescence: a prospective study on the fetal origins of depressed mood. Neuropsychopharmacology. 2008;33:536–45.

    Article  PubMed  Google Scholar 

  63. Entringer S, Epel ES, Kumsta R, et al. Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood. Proc Natl Acad Sci U S A. 2011;108:E513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shalev I, Entringer S, Wadhwa PD, Wolkowitz OM, Puterman E, Lin J, Epel ES. Stress and telomere biology: a lifespan perspective. Psychoneuroendocrinology. 2013;38(9):1835–42. https://doi.org/10.1016/j.psyneuen.2013.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Mastorci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mastorci, F., Agrimi, J. (2019). Fetal Programming of Adult Disease in a Translational Point of View. In: Pingitore, A., Mastorci, F., Vassalle, C. (eds) Adolescent Health and Wellbeing. Springer, Cham. https://doi.org/10.1007/978-3-030-25816-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25816-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25815-3

  • Online ISBN: 978-3-030-25816-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics