Skip to main content

Tight-Binding Model

  • Chapter
  • First Online:
  • 402 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, we present a description of the electronic and optical properties of mono- and few-layer InSe in the context of a tight-binding model. We find a marked change in the band gap on going from the bulk (band gap \(\sim \)1.3 eV) to the monolayer (band gap \(\sim \)2.8 eV) case, in agreement with experiment. We find that the principal interband optical transition is of a dominantly out-of-plane polarised character, with the oscillator strength increasing for thicker crystals, while the next-lowest energy transition couples strongly to in-plane polarised light, with an oscillator strength which is largely independent of the number of layers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Reference [8] demonstrates the \(\mathbf {k\cdot p}\) expansion up to 8th order, necessary to obtain the anisotropy responsible for the expected Lifshitz transition, but as we neglect spin-orbit coupling, which changes the depth of the offset, we do not take that approach here.

  2. 2.

    As we take the modulus of \(\mathbf {p}\) it is sufficient to choose either component of the twice-degenerate band.

References

  1. Goringe CM, Bowler DR, Hernández E (1997) Rep Prog Phys 60:1447

    Article  ADS  Google Scholar 

  2. Frauenheim T, Seifert G, Elstner M, Niehaus T, Köhler C, Amkreutz M, Sternberg M, Hajnal Z, Carlo AD, Suhai S (2002) J Phys Condens Matter 14:3015

    Article  ADS  Google Scholar 

  3. Haldane FDM (1988) Phys Rev Lett 61:2015

    Article  ADS  MathSciNet  Google Scholar 

  4. Pereira VM, Neto AHC, Peres NMR (2009) Phys Rev B 80:45401

    Article  ADS  Google Scholar 

  5. Pearce AJ, Mariani E, Burkard G (2016) Phys Rev B 94:155416

    Article  ADS  Google Scholar 

  6. Hancock Y, Uppstu A, Saloriutta K, Harju A, Puska MJ (2010) Phys Rev B 81:245402

    Article  ADS  Google Scholar 

  7. Bandurin DA, Tyurnina AV, Geliang LY, Mishchenko A, Zólyomi V, Morozov SV, Kumar RK, Gorbachev RV, Kudrynskyi ZR, Pezzini S, Kovalyuk ZD, Zeilter U, Novoselov KS, Patanè A, Eaves L, Grigorieva II, Fal’ko VI, Geim AK, Cao Y (2017) Nat Nanotechnol 12:223

    Article  ADS  Google Scholar 

  8. Zólyomi V, Drummond ND, Fal’ko VI (2014) Phys Rev B 89:205416

    Article  ADS  Google Scholar 

  9. Slater JC, Koster GF (1954) Phys Rev 94:1498

    Article  ADS  Google Scholar 

  10. Jones R (2015) Rev Mod Phys 87:897

    Article  ADS  Google Scholar 

  11. Fiorentini V, Baldereschi A (1995) Phys Rev B 51:17196

    Article  ADS  Google Scholar 

  12. Johnson KA, Ashcroft NW (1998) Phys Rev B 58:15548

    Article  ADS  Google Scholar 

  13. Bernstein N, Mehl MJ, Papaconstantopoulos DA (2002) Phys Rev B 66:075212

    Article  ADS  Google Scholar 

  14. Parashari SS, Kumar S, Auluck S (2008) Phys B 403:3077

    Article  ADS  Google Scholar 

  15. Thilagam A, Simpson DJ, Gerson AR (2010) J Phys Condens Matter 23:025901

    Article  ADS  Google Scholar 

  16. Babu KR, Lingam CB, Auluck S, Tewari SP, Vaitheeswaran G (2011) J Solid State Chem 184:343

    Article  ADS  Google Scholar 

  17. Camassel J, Merle P, Mathieu H, Chevy A (1978) Phys Rev B 17:4718

    Article  ADS  Google Scholar 

  18. Millot M, Broto JM, George S, González J, Segura A (2010) Phys Rev B 81:205211

    Article  ADS  Google Scholar 

  19. Mudd GW, Svatek SA, Ren T, Patanè A, Makarovsky O, Eaves L, Beton PH, Kovalyuk ZD, Lashkarev GV, Kudrynskyi ZR, Dmitriev AI (2013) Adv Mater 25:5714

    Article  Google Scholar 

  20. Rigoult J, Rimsky A, Kuhn A (1980) Acta Crystallogr B 36:916

    Article  Google Scholar 

  21. Lew Yan Voon LC, Ram-Mohan LR (1993) Phys Rev B 47:15500

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel J. Magorrian .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Magorrian, S.J. (2019). Tight-Binding Model. In: Theory of Electronic and Optical Properties of Atomically Thin Films of Indium Selenide. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-25715-6_2

Download citation

Publish with us

Policies and ethics