Skip to main content

Fungal Enzymes for Bioremediation of Contaminated Soil

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Using important various fungal enzymes has been in practice for the removal of contaminants in the soil which is polluted by various effluents. The white rot fungi are more effective in biodegrading a wide range of organic molecules due to their release of extracellular lignin transforming enzymes. Various enzymes are employed for biodegrading lignin, and these include lignin-peroxidase (LiP), manganese peroxidase (MnP), various H2O2-producing enzymes, and laccase. The biodegradation can be improved by the addition of carbon sources such as sawdust, straw, and corn cob at various soil polluted sites. Various ecological groups are deliberated for the bioremediation, that is, the white rot fungi, brown rot fungi (the saprotrophic basidiomycetes), and the ectomycorrhizal basidiomycetes have the capability for in vitro biodegradation of simple and recalcitrant hydrocarbons like PAH, persistent organic pollutants (POPs), halogenated HC, aromatic HC and phenols, explosives and dyes, and this was reported for many species in contaminated soil at various sites. Several fungal strains such as Agaricus sp., Amanita sp., Cortinarius sp., Boletus sp., Leccinum sp., Suillus sp., Pleurotus sp. and Phellinus sp. are some of the mushrooms applicable for the mobilization/complexation of heavy metals Cd, Cr, Hg, Pb, Cu, Zn, and As in soil. Carcinogenic secondary metabolite aflatoxin B1 (AFB1), a natural toxin and heavy metal, is biodegraded by P. ostreatus, an edible mushroom. Various potentially toxic trace elements (PTEs) are also accumulated in the fruiting bodies of mushrooms like Phellinus badius, Amanita spissa, Lactarius piperatus, Suillus grevillei, Agaricus bisporus, Tricholoma terreum, and Fomes fomentarius. The accumulation capability was higher than that of plants, vegetables, and fruits.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham J, Shanker A, Silambarasan S (2013) Role of Gordonia sp. JAAS 1 in biodegradation of chlorpyrifos and its hydrolysing metabolite 3, 5, 6-trichloro-2-pyridinol. Lett Appl Microbiol 57(6):510–516

    Article  CAS  PubMed  Google Scholar 

  • Akar T, Anilan B, Kaynak Z, Gorgulu A, Akar ST (2008) Batch and dynamic flow biosorption potential of Agaricus bisporus/Thuja orientalis biomass mixture for decolorization of RR45 dye. Ind Eng Chem Res 47(23):9715–9723

    Article  CAS  Google Scholar 

  • Alamgir ANM (2018) Therapeutic use of medicinal plants and their extracts: Volume 2: phytochemistry and bioactive compounds. Springer International Publishing, Cham

    Book  Google Scholar 

  • Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2013) Essential cell biology. Garland Science/Taylor & Francis Group, New York

    Google Scholar 

  • Alexander SP, Fabbro D, Kelly E, Marrion NV, Peters JA, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Southan C, Davies JA (2017) The concise guide to PHARMACOLOGY 2017/18: enzymes. Br J Pharm 174:272–359

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  PubMed  Google Scholar 

  • Alloway BJ (2013) Sources of heavy metals and metalloids in soils. In: Alloway BJ (ed) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer Netherlands, Dordrecht, pp 11–50

    Chapter  Google Scholar 

  • Alvarez A, Saez JM, Costa JSD, Colin VL, Fuentes MS, Cuozzo SA, Benimeli CS, Polti MA, Amoroso MJ (2017) Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166:41–62

    Article  CAS  PubMed  Google Scholar 

  • Anasonye F, Winquist E, Kluczek-Turpeinen B, Räsänen M, Salonen K, Steffen KT, Tuomela M (2014) Fungal enzyme production and biodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in contaminated sawmill soil. Chemosphere 110:85–90

    Article  CAS  PubMed  Google Scholar 

  • Anasonye F, Winquist E, Räsänen M, Kontro J, Björklöf K, Vasilyeva G, Jørgensen KS, Steffen KT, Tuomela M (2015) Bioremediation of TNT contaminated soil with fungi under laboratory and pilot scale condition. Int Biodeterior Biodegradation 105:7–12

    Article  CAS  Google Scholar 

  • Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. JBIC J Biolog Inorg Chem 13(8):1205–1218

    Article  CAS  Google Scholar 

  • Anyasi RO, Atagana HL (2011) Biological remediation of polychlorinated biphenyls (PCB) in the environment by microorganisms and plants. Afr J Biotechnol 10(82):18916–18938

    Article  CAS  Google Scholar 

  • Aragay G, Pons J, Merkoçi A (2011) Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev 111(5):3433–3458

    Article  CAS  PubMed  Google Scholar 

  • Babič MN, Gunde-Cimerman N, Vargha M, Tischner Z, Magyar D, Veríssimo C, Sabino R, Viegas C, Meyer W, Brandão J (2017) Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. Int J Environ Res Public Health 14(6):636

    Article  CAS  Google Scholar 

  • Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzym Microb Technol 32(1):78–91

    Article  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Barsainya M, Chandra P, Singh DP (2016) Investigation of Cr (VI) uptake in saline condition using psychrophilic and mesophilic Penicillium sp. Int J Curr Microbiol Appl Sci 5:274-288

    Google Scholar 

  • Bhadbhade BJ, Sarnaik SS, Kanekar PP (2002) Biomineralization of an organophosphorus pesticide, Monocrotophos, by soil bacteria. J Appl Microbiol 93(2):224–234

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar A, Minocha AK (2010) Biosorption optimizations of nickel removal from water using Punica granatum peel waste. Colloids Surf B Biointerfaces 76(2):544–548

    Article  CAS  PubMed  Google Scholar 

  • Blackwell M (2011) The Fungi: 1, 2, 3… 5.1 million species? Am J Bot 98(3):426–438

    Article  PubMed  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74(1):63–67

    Article  CAS  Google Scholar 

  • Bosco F, Mollea C (2019) Mycoremediation in soil. In: Biodegradation processes. Intech Open, London Bridge Street, UK, pp 1–1632

    Google Scholar 

  • Boswell GP, Jacobs H, Ritz K, Gadd GM, Davidson FA (2007) The development of fungal networks in complex environments. Bull Math Biol 69(2):605

    Article  PubMed  Google Scholar 

  • Branham B, Miltner ERIC, Rieke P (1995) Potential groundwater contamination from pesticides and fertilizers used on golf courses. USGA Green Sect Rec 33(1):33–37

    Google Scholar 

  • Burridge L, Weis JS, Cabello F, Pizarro J, Bostick K (2010) Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306(1–4):7–23

    Article  CAS  Google Scholar 

  • Cajthaml T (2015) Biodegradation of endocrine-disrupting compounds by ligninolytic fungi: mechanisms involved in the degradation. Environ Microbiol 17(12):4822–4834

    Article  CAS  PubMed  Google Scholar 

  • Camarero S, Ibarra D, Martínez ÁT, Romero J, Gutiérrez A, José C (2007) Paper pulp delignification using laccase and natural mediators. Enzym Microb Technol 40(5):1264–1271

    Article  CAS  Google Scholar 

  • Chandra P, Singh DP (2014) Removal of Cr (VI) by a halotolerant bacterium Halomonas sp. CSB 5 isolated from Sāmbhar salt lake Rajasthan (India). Cell Mol Biol 60(5):64–72

    Google Scholar 

  • Chandra, Enespa (2016) Applications and mechanisms of plant growth-stimulating rhizobacteria. In: Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 37–62

    Chapter  Google Scholar 

  • Chandra P, Enespa (2019) Mycoremediation of environmental pollutants from contaminated soil. In: Mycorrhizosphere and pedogenesis. Springer, Singapore, pp 239–274

    Google Scholar 

  • Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11(1):233–260

    Article  CAS  Google Scholar 

  • Chen F, Ying GG, Yang GF, Zhao JL, Wang L (2010) Rapid resolution liquid chromatography-tandem mass spectrometry method for the determination of endocrine disrupting chemicals (EDCs), pharmaceuticals and personal care products (PPCPs) in wastewater irrigated soils. J Environ Sci Health Part B 45(7):682–693

    Article  CAS  Google Scholar 

  • Christian V, Shrivastava R, Shukla D, Modi HA, Vyas BRM (2005) Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: enzymology and mechanisms involved. Indian J Exp Biol 43:301–312

    CAS  PubMed  Google Scholar 

  • Clodoveo ML, Hbaieb RH, Kotti F, Mugnozza GS, Gargouri M (2014) Mechanical strategies to increase nutritional and sensory quality of virgin olive oil by modulating the endogenous enzyme activities. Compr Rev Food Sci Food Saf 13(2):135–154

    Article  CAS  PubMed  Google Scholar 

  • Cohen R, Hadar Y (2001) The roles of fungi in agricultural waste conversion. Br Myco Soc Symp 23:305–334

    CAS  Google Scholar 

  • Cohen R, Persky L, Hadar Y (2002) Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl Microbiol Biotechnol 58(5):582–594

    Article  CAS  PubMed  Google Scholar 

  • Colborn T, Vom Saal FS, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101(5):378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Covino S, Stella T, Cajthaml T (2016) Mycoremediation of organic pollutants: principles, opportunities, and pitfalls. In: Fungal applications in sustainable environmental biotechnology. Springer, Cham, pp 185–231

    Chapter  Google Scholar 

  • Darbre PD (2015) What are endocrine disrupters and where are they found? In: Endocrine disruption and human health. Academic Press, London, UK, pp 3–26

    Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena R, Formanek P (2017) Enzymatic degradation of lignin in soil: a review. Sustainability 9(7):1163

    Article  CAS  Google Scholar 

  • Denard CA, Hartwig JF, Zhao H (2013) Multistep one-pot reactions combining biocatalysts and chemical catalysts for asymmetric synthesis. ACS Catal 3(12):2856–2864

    Article  CAS  Google Scholar 

  • Deng Z, Cao L, Huang H, Jiang X, Wang W, Shi Y, Zhang R (2011) Characterization of Cd-and Pb-resistant fungal endophyte Mucor sp. CBRF59 isolated from rapes (Brassica chinensis) in a metal-contaminated soil. J Hazard Mater 185(2–3):717–724

    Article  CAS  PubMed  Google Scholar 

  • Dhal B, Thatoi HN, Das NN, Pandey BD (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater 250:272–291

    Article  PubMed  CAS  Google Scholar 

  • Dodgen LK, Li J, Wu X, Lu Z, Gan JJ (2014) Transformation and removal pathways of four common PPCP/EDCs in soil. Environ Pollut 193:29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte RMBO, Matos JTV, Senesi N (2018) Organic pollutants in soils. In: Duarte AC, Cachada A, Rocha Santos T (eds) Soil pollution from monitoring to remediation. Elsevier/Academic Press, London, pp 103–126

    Google Scholar 

  • Dubos RJ (1987) Mirage of Health: Utopias, progress, and biological change. Rutgers University Press, New Brunswick/New Jersey

    Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  • Dwivedi SK, Enespa (2014) Evaluation of heavy metals toxicity against soil-borne fusarial pathogens causing wilt in vegetable crops. Journal of Mycopathological Research 52 (1): 69-73

    Google Scholar 

  • Enespa, Chandra P (2017) Microbial volatiles as chemical weapons against pathogenic fungi. In: Volatiles and food security. Springer, Singapore, pp 227–254

    Chapter  Google Scholar 

  • Eriksson KEL, Blanchette RA, Ander P (1990) Biodegradation of cellulose. In: Microbial and enzymatic degradation of wood and wood components. Springer, Berlin/Heidelberg, pp 89–180

    Chapter  Google Scholar 

  • Faber K, Faber K (1992) Biotransformations in organic chemistry, vol 4. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Fan CY, Krishnamurthy S (1995) Enzymes for enhancing bioremediation of petroleum-contaminated soils: a brief review. J Air Waste Manag Assoc 45(6):453–460

    Article  CAS  PubMed  Google Scholar 

  • Ferhan M (2016) A review on Bark Valorization for bio-based polyphenolic and polyaromatic compounds. J Biochem Biotechnol Biomat 1(1):1–15

    Google Scholar 

  • Fleischer M, Sarofim AF, Fassett DW, Hammond P, Shacklette HT, Nisbet IC, Epstein S (1974) Environmental impact of cadmium: a review by the Panel on Hazardous Trace Substances. Environ Health Perspect 7:253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336(6089):1715–1719

    Article  CAS  PubMed  Google Scholar 

  • Förstner U, Wittmann GT (2012) Metal pollution in the aquatic environment. Springer Science & Business Media, Berlin/Heidelberg/New York/Tokyo

    Google Scholar 

  • Galhaup C, Haltrich D (2001) Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Appl Microbiol Biotechnol 56(1–2):225–232

    Article  CAS  PubMed  Google Scholar 

  • Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163(2–3):475–510

    Article  CAS  PubMed  Google Scholar 

  • Giesy JP, Kannan K (1998) Dioxin-like and non-dioxin-like toxic effects of polychlorinated biphenyls (PCBs): implications for risk assessment. Crit Rev Toxicol 28(6):511–569

    Article  CAS  PubMed  Google Scholar 

  • Girish KS, Kemparaju K (2007) The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 80(21):1921–1943

    Article  CAS  PubMed  Google Scholar 

  • Glasser FP (2001) Mineralogical aspects of cement in radioactive waste disposal. Mineral Mag 65(5):621–633

    Article  CAS  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ribeiro AB (2013) Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci Total Environ 445:237–260

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130(3):317–323

    Article  CAS  PubMed  Google Scholar 

  • Goodman BE (2010) Insights into digestion and absorption of major nutrients in humans. Adv Physiol Educ 34(2):44–53

    Article  PubMed  Google Scholar 

  • Goudopoulou A, Krimitzas A, Typas MA (2010) Differential gene expression of ligninolytic enzymes in Pleurotus ostreatus grown on olive oil mill wastewater. Appl Microbiol Biotechnol 88(2):541–551

    Article  CAS  PubMed  Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511

    Article  CAS  PubMed  Google Scholar 

  • Hall JZ (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  CAS  PubMed  Google Scholar 

  • Hamelinck CN, Van Hooijdonk G, Faaij AP (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term. Biotechnol Bioeng 28(4):384–410

    CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1–3):1–15

    Article  CAS  PubMed  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177

    Article  CAS  PubMed  Google Scholar 

  • Hofrichter M (2002) Lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30(4):454–466

    Article  CAS  Google Scholar 

  • Howdeshell KL, Peterman PH, Judy BM, Taylor JA, Orazio CE, Ruhlen RL, Vom Saal FS, Welshons WV (2003) Bisphenol A is released from used polycarbonate animal cages into water at room temperature. Environ Health Perspect 111(9):1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098

    Article  CAS  PubMed  Google Scholar 

  • Igiehon NO, Babalola OO (2017) Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl Microbiol Biotechnol 101(12):4871–4881

    Article  CAS  PubMed  Google Scholar 

  • Jan S, Parray JA (2016) Use of mycorrhiza as metal tolerance strategy in plants. In: Approaches to heavy metal tolerance in plants. Springer, Singapore, pp 57–68

    Chapter  Google Scholar 

  • Jebapriya GR, Gnanadoss JJ (2013) Bioremediation of textile dye using white rot fungi: a review. Int J Curr Res Rev 5(3):1

    Google Scholar 

  • Josefsson S, Bergknut M, Futter MN, Jansson S, Laudon H, Lundin L, Wiberg K (2016) Persistent organic pollutants in streamwater: influence of hydrological conditions and landscape type. Environ Sci Technol 50(14):7416–7424

    Article  CAS  PubMed  Google Scholar 

  • Joy J, Jose C, Mathew PL, Thomas S, Khalaf MN (2015) Biological delignification of biomass. In: Green polymers and environmental pollution control. CRC Press, Taylor & Francis Group, Broken Sound Parkway NW, pp. 271–291

    Google Scholar 

  • Kabiersch G, Rajasärkkä J, Ullrich R, Tuomela M, Hofrichter M, Virta M, Hatakka A, Steffen K (2011) Fate of bisphenol A during treatment with the litter-decomposing fungi Stropharia rugosoannulata and Stropharia coronilla. Chemosphere 83(3):226–232

    Article  CAS  PubMed  Google Scholar 

  • Kapahi M, Sachdeva S (2017) Mycoremediation potential of Pleurotus species for heavy metals: a review. Bioresour Bioprocess 4(32):1–9

    Google Scholar 

  • Karademir A, Ergül HA, Telli B, Kılavuz SA, Terzi M (2013) Evaluation of PCDD/F pollution in surface sediments of Izmit Bay. Environ Sci Pollut Res 20(9):6611–6619

    Article  CAS  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzym Res 2011:1–11

    Article  CAS  Google Scholar 

  • Karwade A, Bhiogade G, Suryawanshi JG, Bhujade AV (2018) Oil extraction, biodiesel production and CI engine investigation using Madhuca indica Methyl Ester. In: Energy and environment. Springer, Singapore, pp 207–218

    Chapter  Google Scholar 

  • Kaur H (2016) Studies of lignin modifying enzymes of a white rot fungus Ganoderma lucidum (P. karst) for their biotechnological application (Doctoral dissertation, Punjab Agricultural University, Ludhiana)

    Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18(4):355–364

    Article  CAS  PubMed  Google Scholar 

  • Kinnunen A, Maijala P, JArvinen P, Hatakka A (2017) Improved efficiency in screening for lignin-modifying peroxidases and laccases of basidiomycetes. Curr Biotechnol 6(2):105–115

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic "combustion": the microbial degradation of lignin. Annu Rev Microbiol 41(1):465–501

    Article  CAS  PubMed  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Rastegari AA, Singh C, Negi P, Singh K, Saxena AK (2019a) Technologies for biofuel production: current development, challenges, and future prospects. In: Rastegari AA, Yadav AN, Gupta A (eds) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, Cham, pp 1–50. https://doi.org/10.1007/978-3-030-14463-0_1

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019b) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Volume 2: perspective for value-added products and environments. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kumar VV (2017) Mycoremediation: a step toward cleaner environment. In: Mycoremediation and environmental sustainability. Springer, Cham, pp 171–187

    Chapter  Google Scholar 

  • Kumar KS, Dahms HU, Won EJ, Lee JS, Shin KH (2015) Microalgae-A promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352

    Article  CAS  Google Scholar 

  • Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD (2011) Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77(19):7007–7015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasat MM (1999) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Sub Res 2:1–25

    Google Scholar 

  • Lechat H, Amat M, Mazoyer J, Buléon A, Lahaye M (2000) Structure and distribution of glucomannan and sulfated glucan in the cell walls of the red alga Kappaphycus alvarezii (Gigartinales, Rhodophyta). J Phycol 36(5):891–902

    Article  CAS  Google Scholar 

  • Lee KM, Kalyani D, Tiwari MK, Kim TS, Dhiman SS, Lee JK, Kim IW (2012) Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresour Technol 123:636–645

    Article  CAS  PubMed  Google Scholar 

  • Leonowicz A, Cho N, Luterek J, Wilkolazka A, Wojtas WM, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41(3–4):185–227

    Article  CAS  PubMed  Google Scholar 

  • Liers C, Pecyna MJ, Kellner H, Worrich A, Zorn H, Steffen KT, Hofrichter M, Ullrich R (2013) Substrate oxidation by dye-decolorizing peroxidases (DyPs) from wood-and litter-degrading agaricomycetes compared to other fungal and plant heme-peroxidases. Appl Microbiol Biotechnol 97(13):5839–5849

    Article  CAS  PubMed  Google Scholar 

  • Loraine GA, Pettigrove ME (2006) Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in southern California. Environ Sci Technol 40(3):687–695

    Article  CAS  PubMed  Google Scholar 

  • Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques–A review. Chemosphere 73(4):429–442

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madhavi V, Lele SS (2009) Laccase: properties and applications. Bioresources 4(4):1694–1717

    Google Scholar 

  • Malyarenko DI, Cooke WE, Adam BL, Malik G, Chen H, Tracy ER, Trosset MW, Sasinowski M, Semmes OJ, Manos DM (2005) Enhancement of sensitivity and resolution of surface-enhanced laser desorption/ionization time-of-flight mass spectrometric records for serum peptides using time-series analysis techniques. Clin Chem 51(1):65–74

    Article  CAS  PubMed  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • Matschullat J (2000) Arsenic in the geosphere- a review. Sci Total Environ 249(1–3):297–312

    Article  CAS  PubMed  Google Scholar 

  • Merckx VSFT (2013) Mycoheterotrophy: an introduction. In: Mycoheterotrophy. Springer, New York, pp 1–17

    Chapter  Google Scholar 

  • Mezcua M, Martínez-Uroz MA, Gómez-Ramos MM, Gómez MJ, Navas JM, Fernández-Alba AR (2012) Analysis of synthetic endocrine-disrupting chemicals in food: a review. Talanta 100:90–106

    Article  CAS  PubMed  Google Scholar 

  • Michael Q (1998) Environmental risk assessment in business. In: Handbook of environmental risk assessment and management. Blackwell Scence, London, pp 402–416

    Google Scholar 

  • Mikszewski A (2004) Emerging technologies for the in situ remediation of PCB-contaminated soils and sediments: bioremediation and nanoscale zero-valent Iron. Status Report prepared for the US EPA Technology Office under a Technology Innovation Program Washington, DC

    Google Scholar 

  • Millati R, Syamsiah S, Niklasson C, Cahyanto MN, Ludquist K, Taherzadeh MJ (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. Bioresources 6(4):5224–5259

    Google Scholar 

  • Miller RM, Fitzsimons MS (2011) Fungal growth in soils. In: The architecture and biology of soils: life in inner space. Cabi International, London, pp 149–163

    Chapter  Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents a critical review. J Hazard Mater 142(1–2):1–53

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra D, Rath SK, Mohapatra PK (2018) Bioremediation of insecticides by white-rot fungi and its environmental relevance. In Mycoremediation and Environmental Sustainability. Springer, Cham, pp 181–212

    Google Scholar 

  • Mouhamadou B, Faure M, Sage L, Marçais J, Souard F, Geremia RA (2013) Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls. Fungal Biol 117(4):268–274

    Article  CAS  PubMed  Google Scholar 

  • Mueller JG, Chapman PJ, Pritchard PH (1989) Creosote-contaminated sites. Their potential for bioremediation. Environ Sci Technol 23(10):1197–1201

    Article  CAS  Google Scholar 

  • Munoz-Munoz J, Cartmell A, Terrapon N, Baslé A, Henrissat B, Gilbert HJ (2017) An evolutionarily distinct family of polysaccharide lyases removes rhamnose capping of complex arabinogalactan proteins. J Biol Chem 292(32):13271–13283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini M, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54(4):655–670

    Article  Google Scholar 

  • Neagoe A, Iordache V, Kothe E (2013) Upscaling the biogeochemical role of arbuscular mycorrhizal fungi in metal mobility. In: Fungi as bioremediators. Springer, Berlin/Heidelberg, pp 285–311

    Chapter  Google Scholar 

  • Nelson DL, Lehninger AL, Cox MM (2008) Lehninger principles of biochemistry. Macmillan: W.H. Freeman, New York

    Google Scholar 

  • Oliveira L, Cordeiro N, Evtuguin DV, Torres IC, Silvestre AJD (2007) Chemical composition of different morphological parts from ‘Dwarf Cavendish’banana plant and their potential as a non-wood renewable source of natural products. Ind Crop Prod 26(2):163–172

    Article  CAS  Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66(3):920–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmieri G, Cennamo G, Faraco V, Amoresano A, Sannia G, Giardina P (2003) Atypical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures. Enzym Microb Technol 33(2–3):220–230

    Article  CAS  Google Scholar 

  • Pandey C, Prabha D, Negi YK (2018) Mycoremediation of common agricultural pesticides. In: Mycoremediation and environmental sustainability. Springer, Cham, pp 155–179

    Chapter  Google Scholar 

  • Papanikolaou S, Komaitis M, Aggelis G (2004) Single Cell Oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 95(3):287–291

    Article  CAS  PubMed  Google Scholar 

  • Parlevliet JE (2002) Durability of resistance against fungal, bacterial and viral pathogens; present situation. Euphytica 124(2):147–156

    Article  CAS  Google Scholar 

  • Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments 58(3):179–196

    Article  CAS  Google Scholar 

  • Pecyna MJ, Ullrich R, Bittner B, Clemens A, Scheibner K, Schubert R, Hofrichter M (2009) Molecular characterization of aromatic peroxygenase from Agrocybe aegerita. Appl Microbiol Biotechnol 84(5):885–897

    Article  CAS  PubMed  Google Scholar 

  • Pérez J, Munoz-Dorado J, de la Rubia TDLR, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5(2):53–63

    Article  PubMed  CAS  Google Scholar 

  • Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27

    Article  CAS  PubMed  Google Scholar 

  • Peu P (2014) Jiang-Hao Tian, Anne-Marie Pourcher, Théodore Bouchez, Eric Gelhaye and Appl Microbiol Biotechnol 98: 9527–9544

    Article  PubMed  CAS  Google Scholar 

  • Pollegioni L, Tonin F, Rosini E (2015) Lignin degrading enzymes. FEBS J 282(7):1190–1213

    Article  CAS  PubMed  Google Scholar 

  • Prado FE, Hilal M, Chocobar-Ponce S, Pagano E, Rosa M, Prado C (2016) Chromium and the plant: a dangerous affair? In: Plant metal interaction. Elsevier, pp 149–177

    Google Scholar 

  • Purohit J, Chattopadhyay A, Biswas MK, Singh NK (2018) Mycoremediation of agricultural soil: bioprospection for sustainable development. In: Mycoremediation and environmental sustainability. Springer, Cham, pp 91–120

    Chapter  Google Scholar 

  • Quinlan RJ, Sweeney MD, Leggio LL, Otten H, Poulsen JCN, Johansen KS, Krogh KB, Jørgensen CI, Tovborg M, Anthonsen A, Tryfona T (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Nat Acad Sci 108(37):15079–15084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raafat D, Von Bargen K, Haas A, Sahl HG (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 74(12):3764–3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramesh A, Walker SA, Hood DB, Guillén MD, Schneider K, Weyand EH (2004) Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. Int J Toxicol 23(5):301–333

    Article  CAS  PubMed  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, Rastegari AA, Singh K, Saxena AK (2019a) Endophytic fungi: biodiversity, ecological significance, and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi: Volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham, pp 1–62. https://doi.org/10.1007/978-3-030-10480-1_1

    Chapter  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rastegari AA, Yadav AN, Gupta A (2019) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, Cham

    Book  Google Scholar 

  • Ray K, Pfaff FF, Wang B, Nam W (2014) Status of reactive non-heme metal–oxygen intermediates in chemical and enzymatic reactions. J Am Chem Soc 136(40):13942–13958

    Article  CAS  PubMed  Google Scholar 

  • Reddy CA (1995) The potential for white-rot fungi in the treatment of pollutants. Curr Opin Biotechnol 6(3):320–328

    Article  CAS  Google Scholar 

  • Rhodes CJ (2014) Mycoremediation (bioremediation with fungi) - growing mushrooms to clean the earth. Chem Speciat Bioavailab 26(3):196–198

    Article  CAS  Google Scholar 

  • Roberti R, Badiali F, Pisi A, Veronesi A, Pancaldi D, Cesari A (2006) Sensitivity of Clonostachys rosea and Trichoderma spp. as potential biocontrol agents to pesticides. J Phytopathol 154(2):100–109

    Article  CAS  Google Scholar 

  • Rodarte-Morales AI, Feijoo G, Moreira MT, Lema JM (2011) Degradation of selected pharmaceutical and personal care products (PPCPs) by white-rot fungi. World J Microbiol Biotechnol 27:1839–1846

    Article  Google Scholar 

  • Romero-Aguilar M, Tovar-Sánchez E, Sánchez-Salinas E, Mussali-Galante P, Sánchez-Meza JC, Castrejón-Godínez ML, Dantán-González E, Trujillo-Vera MÁ, Ortiz-Hernández ML (2014) Penicillium sp. as an organism that degrades endosulfan and reduces its genotoxic effects. Springer Plus 3(1):536

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Roots O (2004) Polychlorinated biphenyls (PCB), polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) in oil shale and fly ash from oil shale-fired power plant in Estonia. Oil Shale 21(4):333–339

    CAS  Google Scholar 

  • Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR (2014) Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Mol Biol Rev 78(4):614–649

    Article  PubMed  PubMed Central  Google Scholar 

  • Safe S (1993) Development of bioassays and approaches for the risk assessment of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin and related compounds. Environ Health Perspect 101(3):317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saiu G, Tronci S, Grosso M, Cadoni E, Curreli N (2018) Pyrene and Chrysene tolerance and biodegradation capability of Pleurotus Sajor-Caju. Open Chem Eng J 12(1):24–35

    Article  CAS  Google Scholar 

  • Salo S, Verta M, Malve O, Korhonen M, Lehtoranta J, Kiviranta H, Isosaari P, Ruokojärv P, Koistinen J, Vartiainen T (2008) Contamination of River Kymijoki sediments with polychlorinated dibenzo-p-dioxins, dibenzofurans and mercury and their transport to the Gulf of Finland in the Baltic Sea. Chemosphere 73(10):1675–1683

    Article  CAS  PubMed  Google Scholar 

  • Salvachúa D, Prieto A, Martínez ÁT, Martínez MJ (2013) Characterization of a novel dye-decolorizing peroxidase (DyP)-type enzyme from Irpex lacteus and its application in enzymatic hydrolysis of wheat straw. Appl Environ Microbiol 79(14):4316–4324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295

    Article  CAS  PubMed  Google Scholar 

  • Sankaran S, Khanal SK, Jasti N, Jin B, Pometto AL III, Van Leeuwen JH (2010) Use of filamentous fungi for wastewater treatment and production of high value fungal byproducts: a review. Crit Rev Environ Sci Technol 40(5):400–449

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42(1):138–157

    Article  CAS  Google Scholar 

  • Sardrood BP, Goltapeh EM, Varma A (2013) An introduction to bioremediation. In: Fungi as bioremediators. Springer, Berlin/Heidelberg, pp 3–27

    Chapter  Google Scholar 

  • Schwarz W (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56(5–6):634–649

    Article  CAS  PubMed  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (2016) Environmental organic chemistry. (pp. 945–974). John Wiley & Sons. Hoboken. New Jeresy

    Google Scholar 

  • Seike N, Kashiwagi N, Otani T (2007) PCDD/F contamination over time in Japanese paddy soils. Environ Sci Technol 41(7):2210–2221

    Article  CAS  PubMed  Google Scholar 

  • Seo JS, Keum YS, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6(1):278–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26(3):246–265

    Article  CAS  PubMed  Google Scholar 

  • Shawai SAA, Nahannu MS, Mukhtar HI, Idris A, Abdullahi II (2017) Assessment of heavy metals concentration in ground water from various locations of Gezawa Local Government Area of Kano State. Adv Mater 6(5):73–76

    Article  CAS  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci 103(32):12115–12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer-Verlag, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

  • Takada S, Nakamura M, Matsueda T, Kondo R, Sakai K (1996) Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida YK-624. Appl Environ Microbiol 62(12):4323–4328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Liu HJ, Zheng TL, Kwon KK, Kim SJ, Yan CL (2008) PAHs contamination and bacterial communities in mangrove surface sediments of the Jiulong River Estuary, China. Mar Pollut Bull 57(6–12):707–715

    Article  CAS  PubMed  Google Scholar 

  • Tibbett M, Carter DO (2008) Soil analysis in forensic taphonomy: chemical and biological effects of buried human remains. CRC Press, Boca Raton/London/New York, pp 29–52

    Google Scholar 

  • Tijani JO, Fatoba OO, Petrik LF (2013) A review of pharmaceuticals and endocrine-disrupting compounds: sources, effects, removal, and detections. Water Air Soil Pollut 224(11):1770–1778

    Article  CAS  Google Scholar 

  • Tortella GR, Diez MC, Durán N (2005) Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31(4):197–212

    Article  CAS  PubMed  Google Scholar 

  • Tsing A (2012) Unruly edges: mushrooms as companion species: for Donna Haraway. Environ Humanit 1(1):141–154

    Article  Google Scholar 

  • Turja R, Soirinsuo A, Budzinski H, Devier M-H, Lehtonen KK (2013) Biomarker responses and accumulation of hazardous substances in mussels (Mytilus trossulus) transplanted along a pollution gradient close to an oil terminal in the Gulf of Finland (Baltic Sea). Comp Biochem Physiol Part C Toxicol Pharmacol 157:80–92

    Article  CAS  Google Scholar 

  • Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64(3):271–293

    Article  CAS  PubMed  Google Scholar 

  • Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24(2):139–177

    Article  CAS  PubMed  Google Scholar 

  • Várnai A, Siikaaho M, Viikari L (2010) Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzym Microb Technol 46(3–4):185–193

    Article  CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11(3):235–250

    Article  CAS  PubMed  Google Scholar 

  • Walker GM, White NA (2011) Introduction to fungal physiology. In: Fungi, Hoboken, pp 1–35

    Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195–226

    Article  CAS  PubMed  Google Scholar 

  • Wania F (2003) Assessing the potential of persistent organic chemicals for long-range transport and accumulation in Polar Regions. Environ Sci Technol 37(7):344–1351

    Google Scholar 

  • Wetherill YB, Akingbemi BT, Kanno J, McLachlan JA, Nadal A, Sonnenschein C, Watson CS, Zoeller RT, Belcher SM (2007) In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol 24(2):178–198

    Article  CAS  PubMed  Google Scholar 

  • Winquist E, Björklöf K, Schultz E, Räsänen M, Salonen K, Anasonye F, Cajthaml T, Steffen T, Jørgensen KS, Tuomela M (2014) Bioremediation of PAH-contaminated soil with fungi–from laboratory to field scale. Int Biodeterior Biodegrad 86:238–247

    Article  CAS  Google Scholar 

  • Wittich RM (1998) Degradation of dioxin-like compounds by microorganisms. Appl Microbiol Biotechnol 49(5):489–499

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2010) Persistent organic pollutants: impact on child health. WHO Press, World Health Organization, Geneva, pp 9–45

    Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198(1):97–107

    Article  CAS  Google Scholar 

  • Wu Y, Singh RP, Deng L (2011) Asymmetric olefin isomerization of butenolides via proton transfer catalysis by an organic molecule. J Am Chem Soc 133(32):12458–12461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20

    Article  Google Scholar 

  • Yadav AN (2019) Endophytic fungi for plant growth promotion and adaptation under abiotic stress conditions. Acta Sci Agric 3:91–93

    Google Scholar 

  • Yadav A, Verma P, Kumar R, Kumar V, Kumar K (2017) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the Genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Chapter  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi Volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 2: perspective for value-added products and environments. Springer International Publishing, Cham

    Book  Google Scholar 

  • Ye L, Spiteller D, Ullrich R, Boland W, Nüske J, Diekert G (2010) Fluoride-dependent conversion of organic compounds mediated by manganese peroxidases in the absence of Mn2+ ions. Biochemist 49(34):7264–7271

    Article  CAS  Google Scholar 

  • Ying GG, Kookana RS (2005) Sorption and degradation of estrogen-like endocrine disrupting chemicals in soil. Environ Toxicol Chem 24(10):2640–2645

    Article  CAS  PubMed  Google Scholar 

  • Zeng GM, Chen AW, Chen GQ, Hu XJ, Guan S, Shang C, Lu LH, Zou ZJ (2012) Responses of Phanerochaete chrysosporium to toxic pollutants: physiological flux, oxidative stress, and detoxification. Environ Sci Technol 46(14):7818–7825

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Chen W, Alvarez PJ (2014) Manganese peroxidase degrades pristine but not surface-oxidized (carboxylated) single-walled carbon nanotubes. Environ Sci Technol 48(14):7918–7923

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Li W, Mabon R, Broadbelt LJ (2017) A critical review on hemicellulose pyrolysis. Energ Technol 5(1):52–79

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, and Department of Plant Pathology, School for Agriculture, MPDC, University of Lucknow, Lucknow, for providing valuable support to write this chapter. There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandra, P., Enespa (2019). Fungal Enzymes for Bioremediation of Contaminated Soil. In: Yadav, A., Singh, S., Mishra, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-25506-0_7

Download citation

Publish with us

Policies and ethics