Skip to main content

Methods and Means of Ensuring Interference Resistance of High-Speed Electronic Devices

  • Chapter
  • First Online:
High-Speed Digital System Design

Abstract

One of the most important requirements for electronic devices and systems is to ensure their high reliability. In a broad sense, the term “reliability” describes the ability of a device to perform all the required functions for a long time without failures and without errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smirnov, A., & Basalaev, K. (2015). The development of requirements to the characteristics of electromagnetic compatibility of general industrial and defense products. Components & Technologies, 2, 98–101 (in Russian).

    Google Scholar 

  2. Belous, A. I., Merdanov, M. K., & Shvedov, S. V. (2016). Microwave electronics in radar systems and communications. In Technical encyclopedia in 2 books. Book 1. Moscow: TECHNOSPHERA (in Russian).

    Google Scholar 

  3. Titovich, N. A., & Polzunov, V. V. (2015). Investigation of semiconductor devices susceptibility to the effects of electromagnetic interference. BSUIR Reports, 2(88), 114–118 (in Russian).

    Google Scholar 

  4. Brigidan, A. M., Titovich, N. A., & Kirshchov, V. M., et al. (1992). Electronic equipment II. Ed. No.1 (148), 3–13 (in Russian).

    Google Scholar 

  5. Mardiguian, М. (1988). A handbook series on electromagnetic interference and compatibility. In Electromagnetic control in components and devices (Vol. 5). Virginia.

    Google Scholar 

  6. Avdeev, V. B., Avdeeva, D. V., & Berdyshev, A. V. (2011). Information countering the threats of terrorism: Technological Institute of the Federal State Educational Establishment of Higher Professional Education “Southern Federal University”, 16, 11–16 (in Russian).

    Google Scholar 

  7. Titovich, N. A. (1995). Thesis report of science and technology conference “Modern problems of radio engineering, electronics and communications” (pp.189–191). Minsk (in Russian).

    Google Scholar 

  8. Titovich, N. A., Polzunov, V. V., & Murashkina Z. N. II Mater. (2011, September 27–29) XV International Science and Technology Conference (ISTEC) “Modern means of communication”. Minsk (in Russian).

    Google Scholar 

  9. Titovich, N. A., & Brigidin, A. (1992). Radio Engineering and Electronics 21, 157–160 (in Russian).

    Google Scholar 

  10. Titovich, N. A. (1993). II International symposium on EMC: Book of scientific reports (pp. 171–175). St. Petersburg (in Russian).

    Google Scholar 

  11. Titovich N.A. (1991). Radio Engineering and Electronics II. 20, 84–87 (in Russian).

    Google Scholar 

  12. Titovich, N. A., Buevich, E. A. Device for controlling the parameters of digital integrated circuits when exposed to electromagnetic interference. The Patent of the Russian Federation 2069865 (in Russian)

    Google Scholar 

  13. Titovich, N. A., & Polzunov, V. V. (2009, March 19). Mater international science and technology conference, dedicated to the 45th anniversary of BSUIR (MRTI) (pp.73–74). Minsk (in Russian).

    Google Scholar 

  14. Korotkov, S. (2016). Electromagnetic interference and signal integrity on printed circuit boards. Electronic & Components, 5, 14–16 (in Russian).

    Google Scholar 

  15. Zakharov, D. (2016). Signal integrity in high-speed communication lines. Electronic & Components, 8, 60–62 (in Russian).

    Google Scholar 

  16. Peresadin, A. (2016). Ensuring the integrity of signals at all stages of design. Electronic & Components, 8, 26–31 (in Russian).

    Google Scholar 

  17. Belov, L., Kochemasov, V., & Stroganova, E. (2015). Passive interpolation in microwave circuits: Appearance mechanisms, measurement methods and ways to reduce. Electronics: NTB. 3(00143), 80–91 (in Russian).

    Google Scholar 

  18. Hartman, R. (2011, May 11) Passive intermodulation (PIM) testing moves to the Base Station. Microwave Journal.

    Google Scholar 

  19. Budzinsky, Yu. A., Bykovsky, S. V., & Vildanov, S. A., et al. (2001, September 14) Completed amplifiers with cyclotron protection for radar receivers. In The book of 11th International Conference “Microwave Appliances and Telecommunication Technologies”, Sevastopol, pp. 190–191 (in Russian).

    Google Scholar 

  20. Cannon, N. (2011, October 7). PIM testing crowing in importance as 4C rolls out in Europe. Microwave Journal.

    Google Scholar 

  21. Strigin, I. (2013). Passive intermodulation interference in mobile networks. Technologies and Communications, 2, pp. 39–40 (in Russian).

    Google Scholar 

  22. Stroganova, E. P. (2008). Smart antennas for 3G networks. Technologies and Communications, 6, 42–45 (in Russian).

    Google Scholar 

  23. Stroganova, E. P. (2008). Cositing: Pros and cons. Technologies and Communications, 4, 68–70 (in Russian).

    Google Scholar 

  24. Dzhurinsky, K. (2006). Miniature coaxial radio components for microwave microelectronics (2nd ed.). M .: Technosphera (in Russian).

    Google Scholar 

  25. Jargon, J. A., & DeGroot, D. C. (1999, October). Comparison of passive intermodulation measurements for the U.S. wireless industries (NIST Technical Note 1515).

    Google Scholar 

  26. Bogdanov, Y., Kochemasov, V., & Khasyanova, E. (2013). Foiled dielectrics - how to choose the best option for printed circuit boards of high-frequency/microwave ranges. Printed Circuit Wiring, Part 1, 2(0043), 156–168; Part 2, 3(0044), 142–147 (in Russian).

    Google Scholar 

  27. Wilkerson, J. R., Lam, Р. С., & Card, K. С., & Steer М. В. (2011). Distributed passive intermodulation distortion on transmission lines. IEEE Transactions MTT, 59(5), 1190–1205.

    Google Scholar 

  28. Rocas, E., Collado, C., Orloff, N. D., Mateu, J., Padilla, A., O’Callaghan, J. M., & Booth J. C. (2011). Passive intermodulation due to self-heating in printed transmission lines. IEEE Transactions MTT, 59(2), 311–322.

    Google Scholar 

  29. Collins, S., & Flynn, K. (1999, November 1). Intermodulation characteristics of ferrite-based directional couplers. Microwave Journal.

    Google Scholar 

  30. Belov, L. A., Kondratov, A. S., Rozhkov, V. M., & Romashchenko, K. V. (2012). Improving the linearity and energy efficiency of wideband power amplifiers. Telecommunications, 5, 23–25 (in Russian).

    Google Scholar 

  31. Bell, Т. (2013–2019). Mitigating external sources of Passive Intermodulation (11410-0756, Rev. A). Anritsu Company.

    Google Scholar 

  32. OST 4G0.012.013-84. Electronic equipment. Definition of durability indicators (in Russian).

    Google Scholar 

  33. The IEC standards for measuring PIM. IEC 62037: Passive RF and microwave devices, Intermodulation level measurement, parts 1–8, IEC 62037–2 Ed. 1.0 b: 2013 RF connectors, connector-cable assemblies and cables. Intermodulation Level Measurement (in Russian).

    Google Scholar 

  34. Bell, Т. (2013–2019). Mitigating external sources of Passive Intermodulation (No. 11410-0756, Rev. A.). Anritsu Company.

    Google Scholar 

  35. Alybin, V. G. (2002, September 9–13). The problems of creating microwave radiation protection shields for radar and communications. In 12th International Crimean Conference “Microwave Appliances and Telecommunication Technologies”. Conference proceedings. Sevastopol: Weber (in Russian).

    Google Scholar 

  36. Ashkenazi, D. Y., Belyaev, V. P., Brodulenko, G. I., Lagovier, B. B., Lebedev, I. V., Mandelstam M. Y., Peretz, R. I., Rebrov, S. I., & Starik A. M. (1976). Resonant gaps of antenna switching units (274 p.). I. V. Lebedev (Eds). M: Soviet Radio (in Russian)

    Google Scholar 

  37. Ropiy, A. I., Starik, A. M., & Shutov, K. K. (1993). Ultrahigh-frequency shields (128 p.). M: Radio and Communication (in Russian).

    Google Scholar 

  38. Sze, S. (1984). Physics of semiconductor devices in 2 books (translation from English under the editorship of Suris R. A.) (456 pp.). M: Mir (in Russian).

    Google Scholar 

  39. Shur, M. (1991). Modern devices based on gallium arsenide (632 p.) (translation from English under the editorship of Levinshteyn M. E. and Chelnokova V. E.). M: Mir (in Russian).

    Google Scholar 

  40. Lebedev, I. V. (1995). New views on the impedance characteristics of semiconductor microwave devices. MPEI Reporter, 2, 19–29 (in Russian).

    Google Scholar 

  41. Lebedev, I. V., & Alybin, V. G. (1978). Resonant grid application for the creation of microwave devices. News of the USSR Universities. Radioelectronics, XXI(10), 24–31 (in Russian).

    Google Scholar 

  42. Soushworth, G. С. (1950). Wave guide system. U.S. Patent No. 2514678 (in Russian).

    Google Scholar 

  43. Goldie, Н. (1972). Radioactive (tritium) ignitor for plasma limiters. IEEE Transactions, ED-19(8), 917–928.

    Article  Google Scholar 

  44. Gawronsri, М., & Goldie, J. (1977). 20WMIC L-band receiver protector Microwave J., 5, 43–46.

    Google Scholar 

  45. Butson, P. S., & Thompson, G. T. (1964). Useful microwave hybrid circuit. Proceedings of the IEEE, 111(7), 1281–1282.

    Google Scholar 

  46. Liberman, L. S., Sestroretsky, B. V., Shpirt, V. A., & Yakuben, L. M. (1972). Semiconductor diodes for controlling microwave power. Radio Engineering, 27(5), 9–24 (in Russian).

    Google Scholar 

  47. Kirillov A. V., & Karchevsky E. V. (1982). Authorship certificate (A. C.) No. 1 042110 (USSR) cl. H01R1/15 (in Russian).

    Google Scholar 

  48. Ramay, R. L. (1972). Active irises and windows. US patent 3649935 (in Russian).

    Google Scholar 

  49. Lebedev, I. V., & Alybin, V. G. (1977). A.C. 566297 (USSR). Power adder circuit for adding powers of microwave devices. BI number 27 (in Russian).

    Google Scholar 

  50. Lebedev, I. V., & Alybin, V. G. (1978). Resonant grid and its application to create microwave devices. News of USSR Higher Educational Establishments - Radio Electronics, 21(10), 24–31 (in Russian).

    Google Scholar 

  51. Bakeman, P. Е., & Armstrong, A. L. (1976). Fast high power octave band width X-band waveguide microwave switch. In IEEE/MTT-S international microwave symposium (pp. 154–156). Cherry Hill: Dig. of Techn. Papers-1976.

    Google Scholar 

  52. Lebedev, I. V., Ugnichev, L. V., & Skorobogatov, D. V. et al. (1992). A. C. 1737571 (USSR) MKI H01P1/15. Microwave power limiter. Discoveries. Inventions, No. 20 (in Russian).

    Google Scholar 

  53. Prokhorov, R. A., Lebedev, I. V., & Skorobogatov, D. V. (1993). Patent 1827041 (USSR), MKI H01R1/15, H01R1/22. Microwave power limiter. Discoveries. Inventions, 25 (in Russian).

    Google Scholar 

  54. Rucken, C. T., Wamoss, J. W., Hill, C. N., & Cox, N. W. (1977). Series-connected GaAsSi IMPATT-diodes chips. Electronics Letters, 13, 331–332.

    Google Scholar 

  55. Lebedev, I. V., Shnitnikov, A. S., Ugnichev, D. V., & Rebrov, A. S. (1989). A. C. 1483518 (USSR), MKI H01P1/15 Limiter. Inventions. Discoveries. 20 (in Russian).

    Google Scholar 

  56. Lazunin, Yu. A., & Fefelov, A. G. (1990). Resonant microwave power limiter on a field-effect transistor. Journal of the Russian Universities. Radioelectronics. 33(5), 83–84 (in Russian).

    Google Scholar 

  57. Krutov, A. V., Mitlin, V. A., & Rebrov, A. S. (2002, September 9–13). Low power protection device. In The book of 12th international Crimean conference “Microwave Appliances and Telecommunication Technologies”. Sevastopol: Weber (in Russian).

    Google Scholar 

  58. Lebedev, I. V., & Shnitnikov, A. S. (1993). Patent of the Russian Federation 2003 208 C1, MKI H0129/06. Semiconductor limiting diode. Inventions. Discoveries. 41–42 (in Russian).

    Google Scholar 

  59. Lebedev, I. V., Shnitnikov, A. S., & Dyakov, I. V. (1997). Trigger-type diode control microwave devices. Radio Engineering, 1 (in Russian).

    Google Scholar 

  60. Lebedev, I. V. (1997). Trigger properties of two-diode chains at high and ultrahigh frequencies. Radio Engineering, 9, 54–60 (in Russian).

    Google Scholar 

  61. Lebedev, I. V., Shnitnikov, A. S., Drozdovsky, N. V., & Drozdovskaya, L. M. (1995). Patent application number 94011538 (RF), MKI H01R1/15 Microwave limiter. Decision to grant a patent (in Russian).

    Google Scholar 

  62. Forrez, М., & Milazzo, С. (1962). Duplexing and switching with multi- pactor discharge. Proceeding of IRE, 4, 442–451.

    Google Scholar 

  63. Budzinsky, Yu. A., Bykovsky, S. V., & Kantyuk, S. P., & Mastryukov, M. A. (1999). Electronic microwave devices on a fast cyclotron wave of electron flow. Radio Engineering, 4, 32 (in Russian).

    Google Scholar 

  64. Golenitsky, I. I., Dukhanin, N. D., Budzinsky, Yu. A., & Bykovsky, S. V. (2001, September10–14). Simulation of a three-dimensional electron-optical system cyclotron protective device. In The book of 11th international conference “Microwave Appliances and Telecommunication Technologies”, Sevastopol, pp. 216–217 (in Russian).

    Google Scholar 

  65. Karapuzov, M. A. (2014). The influence of external disturbing factors on the durability of microwave devices. In M. A. Karapuzov, S. N. Polessky, & V. V. Zhadnov (Eds.), Reliability and quality of complex systems (No. 2(6), pp. 14–20) (in Russian).

    Google Scholar 

  66. Dzhurinsky, K., & Filippov, A. (2007). Products of Spectrum Control company for the suppression of electromagnetic interference. Components and Technologies, 7, 100–103 (in Russian).

    Google Scholar 

  67. Dzhurinsky, K. (2006). Miniature coaxial radio components for microwave microelectronics. Moscow: Technosphera (in Russian).

    Google Scholar 

  68. GOST 27.003-89. Reliability in technology. Composition and general rules for setting requirements for reliability (in Russian).

    Google Scholar 

  69. Reliability of electrical radio products: Handbook. http://www.twirpx.com/file/1062157/ (in Russian).

  70. NSWC-11. (2011). Handbook of reliability prediction procedure for mechanical equipment.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Belous, A., Saladukha, V. (2020). Methods and Means of Ensuring Interference Resistance of High-Speed Electronic Devices. In: High-Speed Digital System Design. Springer, Cham. https://doi.org/10.1007/978-3-030-25409-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25409-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25408-7

  • Online ISBN: 978-3-030-25409-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics