Skip to main content

Recent Developments in Maculopathy

  • Chapter
  • First Online:
  • 754 Accesses

Abstract

Maculopathies represent an extremely heterogeneous group of retinal diseases, which benefitted from the introduction and development of even more advanced diagnostic and therapeutic procedures. Multimodal imaging techniques strongly improved the diagnostic workout of maculopathies, due to their capability to provide very detailed microstructural and functional information, in vivo, non-invasively. On the other side, intravitreal treatments have a very strong impact on the natural history of maculopathies, determining significant improvements of retinal anatomy and visual function, as well as an increase of patients’ quality of life. In this chapter, we provided an overview of the current diagnostic and therapeutic strategies adopted in the field of maculopathies. Moreover, we discussed about future perspective regarding the improvement of diagnostic tools, by means of innovative techniques, such as artificial intelligence; new promising treatments, namely gene therapies and retinal microchips, have been shown as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Novotny HR, Alvis DL. A method of photographing fluorescence in circulating blood in the human retina. Circulation. 1961;24:82–6.

    Article  CAS  PubMed  Google Scholar 

  2. Marmor MF, Ravin JG. Fluorescein angiography: insight and serendipity a half century ago. Arch Ophthalmol. 2011;129(7):943–8.

    Article  PubMed  Google Scholar 

  3. Yannuzzi LA, Slakter JS, Sorenson JA, Guyer DR, Orlock DA. Digital indocyanine green videoangiography and choroidal neovascularization. Retina. 1992;12(3):191–223.

    Article  CAS  PubMed  Google Scholar 

  4. Yannuzzi LA. Indocyanine green angiography: a perspective on use in the clinical setting. Am J Ophthalmol. 2011;151:745–751.e1.

    Article  PubMed  Google Scholar 

  5. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991;254:1178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wojtkowski M, Leitgeb R, Kowalczyk A, et al. In vivo human retinal imaging by Fourier Domain optical coherence tomography. J Biomed Opt. 2002;7:457–63.

    Article  PubMed  Google Scholar 

  7. Postaid B, Baumann B, Huang D, et al. Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt Express. 2010;18:200029–48.

    Google Scholar 

  8. Lavinsky F, Lavinsky D. Novel perspectives on swept-source optical coherence tomography. Int J Retina Vitreous. 2016;2:25. eCollection 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gabriele ML, Wollstein G, Ishikawa H, et al. Optical coherence tomography: history, current status, and laboratory work. Invest Ophthalmol Vis Sci. 2011;52(5):2425–36.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kashani AH, Chen CL, Gahm JK, et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res. 2017;60:66–100.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tan ACS, Tan GS, Denniston AK, et al. An overview of the clinical applications of optical coherence tomography angiography. Eye (Lond). 2018;32(2):262–86.

    Article  CAS  Google Scholar 

  12. Frampton GK, Kalita N, Payne L, et al. Fundus autofluorescence imaging: systematic review of test accuracy for the diagnosis and monitoring of retinal conditions. Eye (Lond). 2017;31(7):995–1007.

    Article  CAS  Google Scholar 

  13. Wolf-Schnurrbusch UE, Wittwer VV, Ghanem R, et al. Blue light versus green light autofluorescence: lesion size of areas with geographic atrophy. Invest Ophthalmol Vis Sci. 2011;52:9497–502.

    Article  PubMed  Google Scholar 

  14. Maryse LL, Carroll J, Skala MC. Imaging retinal melanin: a review of current technologies. J Biol Eng. 2018;12:29.

    Article  CAS  Google Scholar 

  15. Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103(2):167–75.

    Article  PubMed  Google Scholar 

  16. Maloca P, Hasler PW, Barthelmes D, et al. Safety and feasibility of a novel sparse optical coherence tomography device for patient-delivered retina home monitoring. Transl Vis Sci Technol. 2018;7(4):8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Solomon SD, Lindsley K, Vedula SS, Krzystolik MG, Hawkins BS. Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database Syst Rev. 2014;8(8):CD005139.

    Google Scholar 

  18. Gower EW, Stein JD, Shekhawat NS, et al. Geographic and demographic variation in use of ranibizumab versus bevacizumab for neovascular age-related macular degeneration in the United States. Am J Ophthalmol. 2017;184:157–66.

    Article  CAS  PubMed  Google Scholar 

  19. CATT Research Group, Martin DF, Maguire MG, et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med. 2011;364(20):1897–908.

    Article  Google Scholar 

  20. Rofagha S, Bhisitkul RB, Boyer DS, Sadda SR, Zhang K. Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology. 2013;120(11):2292–9.

    Article  PubMed  Google Scholar 

  21. Brown DM, Kaiser PK, Michels M, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med. 2006;355:1432–44.

    Article  CAS  PubMed  Google Scholar 

  22. Heier JS, Brown DM, Chong V, et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012;119:2537–48.

    Article  PubMed  Google Scholar 

  23. Schmidt-Erfurth U, Kaiser PK, Korobelnik JF, et al. Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six-week results of the VIEW studies. Ophthalmology. 2014;121(1):193–201.

    Article  PubMed  Google Scholar 

  24. Schlottmann PG, Alezzandrini AA, Zas M, Rodriguez FJ, Luna JDWL. New treatment modalities for neovascular age-related macular degeneration. Asia Pac J Ophthalmol (Phila). 2017;6:514–9.

    CAS  Google Scholar 

  25. Dugel PU, Jaffe GJ, Sallstig P, et al. Brolucizumab versus aflibercept in participants with neovascular age-related macular degeneration: a randomized trial. Ophthalmology. 2017;124(9):1296–304.

    Article  PubMed  Google Scholar 

  26. Wykoff CC, Hariprasad SM, Zhou B. Innovation in neovascular age-related macular degeneration: consideration of brolucizumab, abicipar, and the port delivery system. Ophthalmic Surg Lasers Imaging Retina. 2018;49(12):913–7.

    Article  PubMed  Google Scholar 

  27. Khurana R. Safety and efficacy of abicipar in patients with neovascular age-related macular degeneration. Lect Present Am Acad Ophthalmol 2018 Annu Meet Oct 27, Chicago; 2018.

    Google Scholar 

  28. Syed YY. Fluocinolone acetonide intravitreal implant 0.19 mg (ILUVIEN): a review in diabetic macular edema. Drugs. 2017;77:575–83.

    Article  CAS  PubMed  Google Scholar 

  29. Massa H, Nagar AM, Vergados A, Dadoukis P, Patra S, Panos GD. Intravitreal fluocinolone acetonide implant (ILUVIEN®) for diabetic macular oedema: a literature review. J Int Med Res. 2019;47(1):31–43.

    Article  CAS  PubMed  Google Scholar 

  30. Campochiaro PA, Brown DM, Pearson A, et al. Long-term benefit of sustained-delivery fluocinolone acetonide vitreous inserts for diabetic macular edema. Ophthalmology. 2011;118(4):626–635.e2.

    Article  PubMed  Google Scholar 

  31. Arbabi A, Liu A, Ameri H. Gene therapy for inherited retinal degeneration. J Ocul Pharmacol Ther. 2019;35(2):79–97.

    Article  CAS  PubMed  Google Scholar 

  32. Millington-Ward S, Chadderton N, O’Reilly M, et al. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther. 2011;19:642–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21:583–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tenenbaum L, Lehtonen E, Monahan PE. Evaluation of risks related to the use of adeno-associated virus-based vectors. Curr Gene Ther. 2003;3:545–65.

    Article  CAS  PubMed  Google Scholar 

  36. Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358:2231–9.

    Article  CAS  PubMed  Google Scholar 

  37. Hauswirth WW, Aleman TS, Kaushal S, et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther. 2008;19:979–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. 2017;31:317–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bennett J. Taking stock of retinal gene therapy: looking back and moving forward. Mol Ther. 2017;25:1076–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cashman SM, Sadowski SL, Morris DJ, Frederick J, Kumar-Singh R. Intercellular trafficking of adenovirus-delivered HSV VP22 from the retinal pigment epithelium to the photoreceptors—implications for gene therapy. Mol Ther. 2002;6:813–23.

    Article  CAS  PubMed  Google Scholar 

  41. Trapani I, Colella P, Sommella A, et al. Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol Med. 2014;6:194–211.

    Article  CAS  PubMed  Google Scholar 

  42. Ghosh A, Yue Y, Duan D. Efficient transgene re-constitution with hybrid dual AAV vectors carrying the minimized bridging sequences. Hum Gene Ther. 2011;22:77–83.

    Article  CAS  PubMed  Google Scholar 

  43. Allocca M, Mussolino C, Garcia-Hoyos M, et al. Novel adeno-associated virus serotypes efficiently trans- duce murine photoreceptors. J Virol. 2007;81:11372–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Allocca M, Manfredi A, Iodice C, Di Vicino U, Auricchio A. AAV-mediated gene replacement, either alone or in combination with physical and pharmacological agents, results in partial and transient protection from photoreceptor degeneration associated with betaPDE deficiency. Invest Ophthalmol Vis Sci. 2011;52:5713–9.

    Article  CAS  PubMed  Google Scholar 

  45. Martin KR, Klein RL, Quigley HA. Gene delivery to the eye using adeno-associated viral vectors. Methods. 2002;28:267–75.

    Article  CAS  PubMed  Google Scholar 

  46. Li Q, Miller R, Han PY, et al. Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential. Mol Vis. 2008;14:1760–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Greenberg KP, Lee ES, Schaffer DV, Flannery G. Gene delivery to the retina using lentiviral vectors. Adv Exp Med Biol. 2006;572:255–66.

    Article  CAS  PubMed  Google Scholar 

  48. Balaggan KS, Ali RR. Ocular gene delivery using lentiviral vectors. Gene Ther. 2012;19:145–53.

    Article  CAS  PubMed  Google Scholar 

  49. White M, Whittaker R, Gandara C, Stoll EA. A guide to approaching regulatory considerations for lentiviral-mediated gene therapies. Hum Gene Ther Methods. 2017;28:163–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Harvey AR, Kamphuis W, Eggers R, et al. Intravitreal injection of adeno-associated viral vectors results in the transduction of different types of retinal neurons in neonatal and adult rats: a comparison with lentiviral vectors. Mol Cell Neurosci. 2002;21:141–57.

    Article  CAS  PubMed  Google Scholar 

  51. Ameri H. Prospect of retinal gene therapy following commercialization of voretigene neparvovec-rzyl for retinal dystrophy mediated by RPE65 mutation. J Curr Ophthalmol. 2018;30:1–2.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358:2240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bennett J, Wellman J, Marshall KA, et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet. 2016;388:661–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dudus L, Anand V, Acland GM, et al. Persistent transgene product in retina, optic nerve and brain after intraocular injection of rAAV. Vis Res. 1999;39:2545–53.

    Article  CAS  PubMed  Google Scholar 

  55. Dalkara D, Byrne LC, Klimczak RR, et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med. 2013;5:189ra176.

    Article  CAS  Google Scholar 

  56. Mace E, Caplette R, Marre O, et al. Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice. Mol Ther. 2015;3:7–16.

    Article  CAS  Google Scholar 

  57. Feuer WJ, Schiffman JC, Davis JL, et al. Gene therapy for Leber hereditary optic neuropathy: initial results. Ophthalmology. 2016;123:558–70.

    Article  PubMed  Google Scholar 

  58. Adijanto J, Naash MI. Nanoparticle-based technologies for retinal gene therapy. Eur J Pharm Biopharm. 2015;95(Pt B):353–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang Y, Rajala A, Cao B, et al. Cell-specific promoters enable lipid-based nanoparticles to deliver genes to specific cells of the retina in vivo. Theranostics. 2016;6:1514–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fink TL, Klepcyk PJ, Oette SM, et al. Plasmid size up to 20kbp does not limit effective in vivo lung gene transfer using compacted DNA nanoparticles. Gene Ther. 2006;13:1048–51.

    Article  CAS  PubMed  Google Scholar 

  61. Apaolaza PS, Del Pozo-Rodriguez A, Torrecilla J, et al. Solid lipid nanoparticle-based vectors intended for the treatment of X-linked juvenile retinoschisis by gene therapy: in vivo approaches in Rs1h-deficient mouse model. J Control Release. 2015;217:273–83.

    Article  CAS  PubMed  Google Scholar 

  62. Apaolaza PS, Del Pozo-Rodriguez A, Solinis MA, et al. Structural recovery of the retina in a retinoschisin-deficient mouse after gene replacement therapy by solid lipid nanoparticles. Biomaterials. 2016;90:40–9.

    Article  CAS  PubMed  Google Scholar 

  63. Bennicelli J, Wright JF, Komaromy A, et al. Reversal of blindness in animal models of leber congenital amaurosis using optimized AAV2-mediated gene transfer. Mol Ther. 2008;16:458–65.

    Article  CAS  PubMed  Google Scholar 

  64. Jacobson SG, Aleman TS, Cideciyan AV, et al. Identifying photoreceptors in blind eyes caused by RPE65 mutations: prerequisite for human gene therapy success. Proc Natl Acad Sci U S A. 2005;102:6177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Morimura H, Fishman GA, Grover SA, Fulton AB, Berson EL, Dryja TP. Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or leber congenital amaurosis. Proc Natl Acad Sci U S A. 1998;95(6):3088–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Weleber RG, Pennesi ME, Wilson DJ, et al. Results at 2 years after gene therapy for RPE65-deficient Leber congenital amaurosis and severe early-childhood-onset retinal dystrophy. Ophthalmology. 2016;123:1606–20.

    Article  PubMed  Google Scholar 

  67. Pennesi ME, Weleber RG, Yang P, et al. Results at 5 years after gene therapy for RPE65-deficient retinal dystrophy. Hum Gene Ther. 2018. [Epub ahead of print].

    Google Scholar 

  68. Cideciyan AV, Jacobson SG, Beltran WA, et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc Natl Acad Sci U S A. 2013;110:E517–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. MacLaren RE, Groppe M, Barnard AR, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet. 2014;383:1129–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. MacLaren RE, Xue K, Barnard A, et al. Gene therapy for choroideremia in a multicenter dose escalation phase I/II clinical trial. Invest Ophthalmol Vis Sci. 2018;59:1195.

    Google Scholar 

  71. Battaglia Parodi M, Arrigo A, McLaren RE, et al. Vascular alterations revealed with optical coherence tomography angiography in patients with choroideremia. Retina. 2019;39(6):1200–5.

    Article  PubMed  Google Scholar 

  72. Mitsios A, Dubis AM, Moosajee M. Choroideremia: from genetic and clinical phenotyping to gene therapy and future treatments. Ther Adv Ophthalmol. 2018;10:2515841418817490.

    PubMed  PubMed Central  Google Scholar 

  73. Zrenner E, Bartz-Schmidt KU, Benav H, et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci. 2010;278:1489–97.

    PubMed  PubMed Central  Google Scholar 

  74. Jones BW, Marc RE. Retinal remodeling during retinal degeneration. Exp Eye Res. 2005;81(2):123–37.

    Article  CAS  PubMed  Google Scholar 

  75. Yanai D, Weiland JD, Mahadevappa M, Greenberg RJ, Fine YI, Humayun MS. Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. Am J Ophthalmol. 2007;143:820–7.

    Article  PubMed  Google Scholar 

  76. Hornig R, Laube T, Walter P, et al. A method and technical equipment for an acute human trial to evaluate retinal implant technology. J Neural Eng. 2005;2(1):S129–34.

    Article  PubMed  Google Scholar 

  77. Gerding H, Benner FP, Taneri S. Experimental implantation of epiretinal retina implants (EPI-RET) with an IOL-type receiver unit. J Neural Eng. 2007;4:S38–49.

    Article  CAS  PubMed  Google Scholar 

  78. Eysel UT, Walter P, Gekeler F, et al. Optical imaging reveals 2-dimensional patterns of cortical activation after local retinal stimulation with sub- and epiretinal visual prostheses. Investig Ophthalmol Vis Sci. 2002;43:ARVO E-Abstract 4486.

    Google Scholar 

  79. Eckhorn R, Wilms M, Schanze T, et al. Visual resolution with retinal implants estimated from recordings in cat visual cortex. Vis Res. 2006;46:2675–90.

    Article  PubMed  Google Scholar 

  80. Eckmiller R. Learning retina implants with epiretinal contacts. Ophthalmic Res. 1997;29:281–9.

    Article  CAS  PubMed  Google Scholar 

  81. Tran BK, Wolfensberger TJ. Retina-implant interaction after 16 months follow-up in a patient with an Argus II prosthesis. Klin Monatsbl Augenheilkd. 2017;234:538–40.

    Article  CAS  PubMed  Google Scholar 

  82. Stelzle M, Stett A, Brunner B, et al. Electrical properties of micro-photodiode arrays for use as artificial retina implant. Biomed Microdevices. 2001;3:133–42.

    Article  Google Scholar 

  83. Stingl K, Bach M, Bartz-Schmidt KU, et al. Safety and efficacy of subretinal visual implants in humans: methodological aspects. Clin Exp Optom. 2013;96:4–13.

    Article  PubMed  Google Scholar 

  84. Stingl K, Schippert R, Bartz-Schmidt KU, et al. Interim results of a multicenter trial with the new electronic subretinal implant Alpha AMS in 15 patients blind from inherited retinal degenerations. Front Neurosci. 2017;11:445.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Luo YH, da Cruz L. The Argus((R)) II retinal prosthesis system. Prog Retin Eye Res. 2016;50:89–107.

    Article  PubMed  Google Scholar 

  86. Gekeler K, Bartz-Schmidt KU, Sachs H, et al. Implantation, removal and replacement of subretinal electronic implants for restoration of vision in patients with retinitis pigmentosa. Curr Opin Ophthalmol. 2018;29(3):239–47.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bandello, F., Battista, M., Brambati, M., Starace, V., Arrigo, A., Battaglia Parodi, M. (2020). Recent Developments in Maculopathy. In: Grzybowski, A. (eds) Current Concepts in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-25389-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25389-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25388-2

  • Online ISBN: 978-3-030-25389-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics