Skip to main content

Collision-Free Optimal Trajectory for a Controlled Floating Space Robot

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2019)

Abstract

Space robots are key to the establishment of a new era of low-cost in-orbit operations. Given the complexities involved in designing and operating of a space robot, several challenges arise and developing new advanced methodologies for control and motion planning is essential. Finding an optimal trajectory for the space robot to attain an out-of-reach grasping point on the target or when the motion of the arm is restricted by singular configurations or obstacles, is a difficult task using the Degrees of Freedom (DoF) of the arm only. Hence, using the redundancy offered by the extra degrees of freedom of the spacecraft base to help the arm reach the target whilst avoiding singularities and obstacles is mission critical. In this paper, an optimal path planning algorithm using Genetic Algorithm was developed for a controlled-floating space robot that takes advantage of the controlled motion of the spacecraft base to safely reach the grasping point. This algorithm minimises several cost functions whilst satisfying constraints on the velocity. Moreover, the algorithm requires only the Cartesian location of the grasping point, to generate a path for the space robot without a priori knowledge of any desired path. The optimal trajectory is tracked using a nonlinear adaptive \(H_{\infty }\) controller for the simultaneous motion of both the manipulator and the base spacecraft. The results presented prove the efficacy of the path planner and controller and it is based on a six DoF manipulator mounted to a a six DoF spacecraft base.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eckersley, S., et al.: In-orbit assembly of large spacecraft using small spacecraft and innovative technologies. In: 69th International Astronautical Congress (IAC), Bremen, Germany, 1–5 October 2018

    Google Scholar 

  2. Henshaw, C.G.: The DARPA phoenix spacecraft servicing program: overview and plans for risk reduction. In: International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), Montreal, 17–19 June 2014

    Google Scholar 

  3. Flores-Abad, A., Ma, O., Pham, K., Ulrich, S.: A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 68, 1–26 (2014)

    Article  Google Scholar 

  4. Seddaoui, A., Saaj, C.: Combined nonlinear H-infinity controller for a controlled-floating space robot. J. Guidance Dyn. Control (JGDC) 22, 1–8 (2019). https://doi.org/10.2514/1.G003811

    Article  Google Scholar 

  5. Dubowsky, S., Torres, M.A.: Path planning for space manipulators to minimize spacecraft attitude disturbances. In: IEEE International Conference on Robotics and Automation, Sacramento, 9–11 April 1991

    Google Scholar 

  6. Piersigilli, P., Sharf, I., Misra, A.: Reactionless capture of a satellite by a two degree-of-freedom manipulator. Acta Astronaut. 66(1–2), 183–192 (2010)

    Article  Google Scholar 

  7. Yoshida, K., Hashizume, K., Abiko, S.: Zero reaction maneuver: flight validation with ETS-VII space robot and extension to kinematically redundant arm. In: IEEE International Conference on Robotics and Automation, Seoul, South Korea, 21–26 May 2001

    Google Scholar 

  8. Rybus, T., Seweryn, K.: Manipulator trajectories during orbital servicing mission: numerical simulations and experiments on microgravity simulator. Prog. Flight Dyn. Guidance Navig. Control-Volume 10(10), 239–264 (2018)

    Article  Google Scholar 

  9. Papadopoulos, E., Dubowsky, S.: Dynamic singularities in free-floating space manipulators. J. Dyn. Syst. Measur. Control 115(1), 44–52 (1993)

    Article  Google Scholar 

  10. Rybus, T.: Obstacle avoidance in space robotics: review of major challenges and proposed solutions. Prog. Aerosp. Sci. 101, 31–48 (2018)

    Article  Google Scholar 

  11. Seddaoui, A., Saaj, C.: H-infinity control for a controlled floating robotic spacecraft. In: International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), Madrid, Spain, 4–6 June 2018

    Google Scholar 

  12. Wei, X.-P., Zhang, J.-X., Zhou, D.-S., Zhang, Q.: Optimal path planning for minimizing base disturbance of space robot. Int. J. Adv. Robot. Syst. 13(2), 41 (2016)

    Article  Google Scholar 

  13. Wang, M., Luo, J., Walter, U.: Trajectory planning of free-floating space robot using particle swarm optimization (PSO). Acta Astronaut. 112, 77–88 (2015)

    Article  Google Scholar 

  14. Wang, M., Luo, J., Yuan, J., Walter, U.: Coordinated trajectory planning of dual-arm space robot using constrained particle swarm optimization. Acta Astronaut. 146, 259–272 (2018)

    Article  Google Scholar 

  15. Kaigom, E.G., Jung, T.J., Roßmann, J.: Optimal motion planning of a space robot with base disturbance minimization. In: 11th Symposium on Advanced Space Technologies in Robotics and Automation, Noordwijk, 12–14 April 2011

    Google Scholar 

  16. Zhang, L., Jia, Q., Chen, G., Sun, H.: Pre-impact trajectory planning for minimizing base attitude disturbance in space manipulator systems for a capture task. Chin. J. Aeronaut. 28(4), 1199–1208 (2015)

    Article  Google Scholar 

  17. Xu, W., Li, C., Liang, B., Liu, Y., Xu, Y.: The cartesian path planning of free-floating space robot using particle swarm optimization. Int. J. Adv. Robot. Syst. 5(3), 27 (2008)

    Article  Google Scholar 

  18. Huang, P., Chen, K., Xu, Y.: Optimal path planning for minimizing disturbance of space robot. In: 9th International Conference on Control, Automation, Robotics and Vision, Singapore, 5–8 December 2006

    Google Scholar 

  19. Chen, Z., Zhou, W.: Path planning for a space-based manipulator system based on quantum genetic algorithm. J. Robot. 2017, 10 (2017)

    Google Scholar 

  20. Wang, M., Luo, J., Fang, J., Yuan, J.: Optimal trajectory planning of free-floating space manipulator using differential evolution algorithm. Adv. Space Res. 61(6), 1525–1536 (2018)

    Article  Google Scholar 

  21. Lampariello, R., Agrawal, S., Hirzinger, G.: Optimal motion planning for free-flying robots. In: IEEE International Conference on Robotics and Automation, Taipei, 14–19 September 2003

    Google Scholar 

  22. Misra, G., Bai, X.: Optimal path planning for free-flying space manipulators via sequential convex programming. J. Control Dyn. 40(11), 3019–3026 (2017)

    Google Scholar 

  23. Virgili-Llop, J., Zagaris, C., Zappulla, R., Bradstreet, A., Romano, M.: Laboratory experiments on the capture of a tumbling object by a spacecraft-manipulator system using a convex-programming-based guidance. In: AAS/AIAA Astrodynamics Specialist Conference, Stevenson, 20–24 August 2017

    Google Scholar 

  24. Wilson, E., Rock, S.M.: Neural-network control of a free-flying space robot. Trans. Soc. Model. Simul. Int. 65(2), 103–115 (1995)

    Article  Google Scholar 

  25. Deb, K., Sundar, J.: Reference point based multi-objective optimization using evolutionary algorithms. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Washington, 08–12 July 2006

    Google Scholar 

  26. Seddaoui, A., Saaj, C.M., Eckersley, S.: Adaptive H infinity controller for precise manoeuvring of a small space robot accepted. In: The IEEE International Conference on Robotics and Automation (ICRA), Montreal, Canada, 20–24 May 2019

    Google Scholar 

  27. Yoshikawa, T.: Dynamic manipulability of robot manipulators. Trans. Soc. Instrum. Control Eng. 21(9), 970–975 (1985)

    Article  Google Scholar 

  28. Chehouri, A., Younes, R., Perron, J., Ilinca, A.: A constraint-handling technique for genetic algorithms using a violation factor. J. Comput. Sci. Sci. Publ. 12, 350–362 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Seddaoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seddaoui, A., Saaj, C.M. (2019). Collision-Free Optimal Trajectory for a Controlled Floating Space Robot. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds) Towards Autonomous Robotic Systems. TAROS 2019. Lecture Notes in Computer Science(), vol 11650. Springer, Cham. https://doi.org/10.1007/978-3-030-25332-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25332-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25331-8

  • Online ISBN: 978-3-030-25332-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics