Skip to main content

Diffraction

  • Chapter
  • First Online:
Physical Optics

Part of the book series: UNITEXT for Physics ((UNITEXTPH))

  • 2124 Accesses

Abstract

Diffraction, whose name was introduced by Grimaldi in 1665, when he first discovered it and described its effects, has been conveniently defined by Sommerfeld (1949), paraphrasing the Grimaldi’s expression, as «any deviation of the light rays from rectilinear paths which cannot be interpreted as reflection or refraction». For example, if an opaque object is placed between a point source and a screen, the shadow thrown by the object does not have an edge as sharp as the one predicted by Geometrical Optics. In fact, careful observation of the shadow edge reveals that a bit of light goes into the shaded area, while darkened fringes appear in the illuminated area.

Lumen propagatur seu diffunditur non solum Directe, Refracte, ac Reflexe, sed etiam alio quodam quarto modo, DIFFRACTE.

Propositio I, De Lumine, P. Francesco Maria Grimaldi

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical References

  • Arnaud J.A., Nonorthogonal optical waveguides and resonators, The Bell Systems Technical Journal 49, 2311-2348 (November 1970).

    Article  MathSciNet  Google Scholar 

  • Abramowitz M. and Stegun I.A., Handbook of Mathematical Functions, Dover Publications Inc., New York (1972).

    Google Scholar 

  • Born M. and Wolf E., Principles of Optics, Pergamon Press, Paris (1980).

    Google Scholar 

  • Collins S.A. Jr., Lens-system diffraction integral written in terms of Matrix optics, J. Opt. Soc. Am. 60, 1168-1177 (September 1970).

    Article  ADS  Google Scholar 

  • Ditchburn R.W., Light, Vol. I and II, Academic Press Inc., London (1976).

    Google Scholar 

  • Ehrlich M.J., Silver S. and Held G., Studies of the Diffraction of Electromagnetic Waves by Circular Apertures and Complementary Obstacles: The Near-Zone Field, J. Appl. Phys. 26, 336-345 (1955).

    Article  ADS  Google Scholar 

  • Erdélyi A., Asymptotic expansion, Dover Publications, inc., New York (1956).

    Google Scholar 

  • Fowles G.R., Introduction to Modern Optics, Holt, Rinehart, and Winston, New York (1968).

    Google Scholar 

  • Guenther R., Modern Optics, John Wiley & Sons, New York (1990).

    Google Scholar 

  • Goodman J.W., Introduction to Fourier Optics, II ed., McGraw-Hill, San Francisco (1996).

    Google Scholar 

  • Hecht E., Optics, 2nd ed., Addison-Wesley, Madrid (1987).

    Google Scholar 

  • Jenkins F.A. and White H.E., Fundamental of Optics, McGraw-Hill, New York (1957).

    Google Scholar 

  • Keller J.B., Diffraction by an Aperture, J. Appl. Phys. 28, 426-444 (1957). Geometrical Theory of Diffraction, J. Opt. Soc. Am. 52, 116-130 (1962).

    Google Scholar 

  • Kottler F., Zur Theorie der Beugung an schwarzen Schirmen, Ann. Physik 375, 405-456 (1923). Elektromagnetische Theorie der Beugung an schwarzen Schirmen, Ann. Physik 376, 457-508 (1923). Diffraction at a black screen, part I: Kirchhoff theory, Progress in Optics IV, 281-314 (1966), reprinted in Scalar Wave Diffraction, K. E. Oughstun ed., SPIE Milestone Series Vol. MS51, p. 108 (1992). Diffraction at a black screen, part II: electromagnetic theory, Progress in Optics VI, 331-377, Elsevier Science Publ. (1967).

    Google Scholar 

  • Landau L. and Lifchitz E., (II), Théorie du Champ, MIR, Mosca (1966).

    Google Scholar 

  • Landsberg G.S., Ottica, MIR, Mosca (1979).

    Google Scholar 

  • Lipson S.G., Lipson H. and Tannhauser D.S., Optical Physics, III ed., Cambridge University Press, Cambridge (1995).

    Google Scholar 

  • Maggi G.A., Sulla propagazione libera e perturbata delle onde luminose in un mezzo isotropo, Annali di Matematica 16, 21-48 (1888).

    Article  Google Scholar 

  • Mansuripur M., Classical Optics and its Applications, Cambridge Univ. Press, Cambridge (2002).

    Google Scholar 

  • Marchand E.W and Wolf E., Consistent Formulation of Kirchhoff’s Diffraction Theory, J. Opt. Soc. Am. 56, 1712-1722 (1966). Diffraction at Small Apertures in Black Screens, J. Opt. Soc. Am. 59, 79-90 (1969).

    Google Scholar 

  • Miyamoto K. and Wolf E., Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave, J. Opt. Soc. Am. 52, Part I: 615-625, Part II: 626-637 (1962).

    Google Scholar 

  • Möller K.D., Optics, University Science Book, Mill Valley (1988).

    Google Scholar 

  • Osterberg H. and Smith L.W., Closed solutions of Rayleigh’s diffraction integral for axial points, J. Opt. Soc. Am. 51, 1050-1054 (1961).

    Article  ADS  Google Scholar 

  • Rubinowicz A., Die Beugungswelle in der Kirchhoffschen Theorie der Beugungserscheinungen, Ann. Physik 358, 257-278 (1917). Zur Kirchhoffschen Beugungstheorie, Ann. Physik 378, 339-364 (1924). - Thomas Young and the theory of diffraction, Nature 180, 160-162 (1957).

    Google Scholar 

  • Sheppard C.J.R. and Hrynevych M., Diffraction by a circular aperture: a generalization of Fresnel diffraction theory, J. Opt. Soc. Am. A 9, 274-281 (1992).

    Article  ADS  Google Scholar 

  • Siegman A. E., Lasers, University Science Books, Mill Valley, California (1986).

    Google Scholar 

  • Sivoukhine D., Optique, MIR, Mosca (1984).

    Google Scholar 

  • Solimeno S., Crosignani B., Di Porto P., Guiding, Diffraction, and Confinement of Optical Radiation, Academic Press, inc., Orlando (1986).

    Google Scholar 

  • Sommerfeld A., Lectures on Theoretical Physics: Optics, Academic Press, New York (1949).

    Google Scholar 

  • Stamnes J.J., Waves in Focal Regions, A. Hilger, Bristol (1986).

    Google Scholar 

  • Stamnes J.J., Spjekavik B. and Pedersen H.M., Evaluation of diffraction integrals using local phase and amplitude approximations, Opt. Acta 30, 227-222 (1983).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Giusfredi .

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giusfredi, G. (2019). Diffraction. In: Physical Optics. UNITEXT for Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-25279-3_4

Download citation

Publish with us

Policies and ethics