Skip to main content

A Spatial Small-World Graph Arising from Activity-Based Reinforcement

  • Conference paper
  • First Online:
Algorithms and Models for the Web Graph (WAW 2019)

Abstract

In the classical preferential attachment model, links form instantly to newly arriving nodes and do not change over time. We propose a hierarchical random graph model in a spatial setting, where such a time-variability arises from an activity-based reinforcement mechanism. We show that the reinforcement mechanism converges, and prove rigorously that the resulting random graph exhibits the small-world property. A further motivation for this random graph stems from modeling synaptic plasticity.

This work is supported by The Danish Council for Independent Research—Natural Sciences, grant DFF – 7014-00074 Statistics for point processes in space and beyond, and by the Centre for Stochastic Geometry and Advanced Bioimaging, funded by grant 8721 from the Villum Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  2. Bengio, Y., Lee, D., Bornschein, J., Lin, Z.: Towards biologically plausible deep learning. CoRR abs/1502.04156 (2015). http://arxiv.org/abs/1502.04156

  3. Bollobás, B., Riordan, O.: The diameter of a scale-free random graph. Combinatorica 24(1), 5–34 (2004)

    Article  MathSciNet  Google Scholar 

  4. Bonacich, P., Liggett, T.M.: Asymptotics of a matrix valued Markov chain arising in sociology. Stoch. Process. Appl. 104(1), 155–171 (2003)

    Article  MathSciNet  Google Scholar 

  5. Couzinié, Y., Hirsch, C.: Infinite WARM graphs I. Weak reinforcement regime (in preparation)

    Google Scholar 

  6. Delattre, S., Fournier, N., Hoffmann, M.: Hawkes processes on large networks. Ann. Appl. Probab. 26(1), 216–261 (2016)

    Article  MathSciNet  Google Scholar 

  7. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events. Springer, Berlin (1997). https://doi.org/10.1007/978-3-642-33483-2

    Book  MATH  Google Scholar 

  8. Feller, W.: An Introduction to Probability Theory and its Applications, vol. II, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  9. Hirsch, C., Holmes, M., Kleptsyn, V.: Absence of WARM percolation in the very strong reinforcement regime, preprint available at https://christian-hirsch.github.io/publications.html

  10. Van Der Hofstad, R., Holmes, M., Kuznetsov, A., Ruszel, W.: Strongly reinforced Pólya urns with graph-based competition. Ann. Appl. Probab. 26(4), 2494–2539 (2016)

    Article  MathSciNet  Google Scholar 

  11. Holmes, M., Kleptsyn, V.: Infinite WARM graphs. Critical regime (in preparation)

    Google Scholar 

  12. Holmes, M., Kleptsyn, V.: Proof of the WARM whisker conjecture for neuronal connections. Chaos 27(4), 043104 (2017)

    Article  MathSciNet  Google Scholar 

  13. Jacob, E., Mörters, P.: A spatial preferential attachment model with local clustering. In: Bonato, A., Mitzenmacher, M., Prałat, P. (eds.) WAW 2013. LNCS, vol. 8305, pp. 14–25. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03536-9_2

    Chapter  Google Scholar 

  14. Kalisman, N., Silberberg, G., Markram, H.: The neocortical microcircuit as a tabula rasa. Proc. Natl. Acad. Sci. 102(3), 880–885 (2005)

    Article  Google Scholar 

  15. Liggett, T.M., Rolles, S.W.W.: An infinite stochastic model of social network formation. Stoch. Process. Appl. 113(1), 65–80 (2004)

    Article  MathSciNet  Google Scholar 

  16. Montague, P.R., Dayan, P., Sejnowski, T.J.: A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16(5), 1936–1947 (1996)

    Article  Google Scholar 

  17. Pemantle, R.: A survey of random processes with reinforcement. Probab. Surv. 4, 1–79 (2007)

    Article  MathSciNet  Google Scholar 

  18. Pemantle, R., Skyrms, B.: Network formation by reinforcement learning: the long and medium run. Math. Soc. Sci. 48(3), 315–327 (2004)

    Article  MathSciNet  Google Scholar 

  19. Pittel, B.: On a random graph evolving by degrees. Adv. Math. 223(2), 619–671 (2010)

    Article  MathSciNet  Google Scholar 

  20. Skyrms, B., Pemantle, R.: A dynamic model of social network formation. Proc. Natl. Acad. Sci. USA 97(16), 9340–9346 (2000)

    Article  Google Scholar 

  21. Stanovich, K.E.: Matthew effects in reading: some consequences of individual differences in the acquisition of literacy. J. Educ. 189(1–2), 23–55 (2009)

    Article  Google Scholar 

  22. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  23. Zhu, T.: Nonlinear Pólya urn models and self-organizing processes. Ph.D. thesis, University of Pennsylvania (2009)

    Google Scholar 

Download references

Acknowledgments

The authors thank all anonymous referees. We also thank C. Leibold for interesting discussions on the neuro-scientific background of synaptic plasticity and comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hirsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heydenreich, M., Hirsch, C. (2019). A Spatial Small-World Graph Arising from Activity-Based Reinforcement. In: Avrachenkov, K., Prałat, P., Ye, N. (eds) Algorithms and Models for the Web Graph. WAW 2019. Lecture Notes in Computer Science(), vol 11631. Springer, Cham. https://doi.org/10.1007/978-3-030-25070-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25070-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25069-0

  • Online ISBN: 978-3-030-25070-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics