Skip to main content

Distributed Pattern Formation in a Ring

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11639))

Abstract

Motivated by concerns about diversity in social networks, we consider the following pattern formation problems in rings. Assume n mobile agents are located at the nodes of an n-node ring network. Each agent is assigned a colour from the set \(\{c_1, c_2, \ldots , c_q \}\). The ring is divided into k contiguous blocks or neighbourhoods of length p. The agents are required to rearrange themselves in a distributed manner to satisfy given diversity requirements: in each block j and for each colour \(c_i\), there must be exactly \(n_i(j) >0\) agents of colour \(c_i\) in block j. Agents are assumed to be able to see agents in adjacent blocks, and move to any position in adjacent blocks in one time step.

When the number of colours \(q=2\), we give an algorithm that terminates in time \(N_1/n^*_1 + k + 4\) where \(N_1\) is the total number of agents of colour \(c_1\) and \(n^*_1\) is the minimum number of agents of colour \(c_1\) required in any block. When the diversity requirements are the same in every block, our algorithm requires \(3k+4\) steps, and is asymptotically optimal. Our algorithm generalizes for an arbitrary number of colours, and terminates in O(nk) steps. We also show how to extend it to achieve arbitrary specific final patterns, provided there is at least one agent of every colour in every pattern.

Research supported by NSERC grants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that if the visibility and movement ranges are smaller, our algorithms still work, though they take more time. The details are lengthy and uninteresting, and therefore omitted from this paper.

References

  1. Benard, S., Willer, R.: A wealth and status-based model of residential segregation. Math. Sociol. 31(2), 149–174 (2007)

    Article  Google Scholar 

  2. Benenson, I., Hatna, E., Or, E.: From Schelling to spatially explicit modeling of urban ethnic and economic residential dynamics. Sociol. Methods Res. 37(4), 463–497 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bose, K., Adhikary, R., Kundu, M.K., Sau, B.: Arbitrary pattern formation on infinite grid by asynchronous oblivious robots. In: Das, G.K., Mandal, P.S., Mukhopadhyaya, K., Nakano, S. (eds.) WALCOM 2019. LNCS, vol. 11355, pp. 354–366. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10564-8_28

    Chapter  Google Scholar 

  4. Brandt, C., Immorlica, N., Kamath, G., Kleinberg, R.: An analysis of one-dimensional Schelling segregation. In: Proceedings of the 44th STOC, pp. 789–804. ACM (2012)

    Google Scholar 

  5. Bredereck, R., Elkind, E., Igarashi, A.: Hedonic diversity games (2019). arXiv preprint arXiv:1903.00303

  6. Chauhan, A., Lenzner, P., Molitor, L.: Schelling segregation with strategic agents. In: Deng, X. (ed.) SAGT 2018. LNCS, vol. 11059, pp. 137–149. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99660-8_13

    Chapter  Google Scholar 

  7. Cicerone, S., Di Stefano, G., Navarra, A.: Asynchronous embedded pattern formation without orientation. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 85–98. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53426-7_7

    Chapter  Google Scholar 

  8. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34, 1516–1528 (2005)

    Article  MathSciNet  Google Scholar 

  9. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems. Theor. Comput. Sci. 399, 71–82 (2008)

    Article  MathSciNet  Google Scholar 

  10. Dall’Asta, L., Castellano, C., Marsili, M.: Statistical physics of the Schelling model of segregation. J. Stat. Mech.: Theory Exp. 2008(07), L07002 (2008)

    Article  Google Scholar 

  11. D’Angelo, G., Di Stefano, G., Klasing, R., Navarra, A.: Gathering of robots on anonymous grids without multiplicity detection. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 327–338. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31104-8_28

    Chapter  Google Scholar 

  12. Eagle, N., Macy, M., Claxton, R.: Network diversity and economic development. Science 328(5981), 1029–1031 (2010)

    Article  MathSciNet  Google Scholar 

  13. Ehresmann, A.L., Lafond, M., Narayanan. L., Opatrny, J.: Distributed pattern formation in a ring (2019). arXiv:1905.08856

  14. Elkind, E., Gan, J., Igarashi, A., Suksompong, W., Voudouris, A.A.: Schelling games on graphs (2019). arXiv preprint arXiv:1902.07937

  15. Elor, Y., Bruckstein, A.M.: Uniform multi-agent deployment on a ring. Theor. Comput. Sci. 412(8–10), 783–795 (2011)

    Article  MathSciNet  Google Scholar 

  16. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots: Synthesis Lectures on Distributed Computing Theory. Morgan and Claypool Publishers, San Rafael (2012)

    Book  Google Scholar 

  17. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Mobile Entities: Current Research in Moving and Computing. LNCS, vol. 11340. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7

    Book  Google Scholar 

  18. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous mobile robots with limited visibility. Theor. Comput. Sci. 337(1–2), 147–168 (2005)

    Article  Google Scholar 

  19. Henry, A.D., Pralat, P., Zhang, C.-Q.: Emergence of segregation in evolving social networks. Proc. Nat. Acad. Sci. 108(21), 8605–8610 (2011)

    Article  MathSciNet  Google Scholar 

  20. Immorlica, N., Kleinberg, R., Lucier, B., Zadomighaddam, M.: Exponential segregation in a two-dimensional Schelling model with tolerant individuals. In: Proceedings of the 20th SODA Symposium, pp. 984–993 (2017)

    Google Scholar 

  21. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theor. Comput. Sci. 390(1), 27–39 (2008)

    Article  MathSciNet  Google Scholar 

  22. Krizanc, D., Lafond, M., Narayanan, L., Opatrny, J., Shende, S.: Satisfying neighbor preferences on a circle. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) LATIN 2018. LNCS, vol. 10807, pp. 727–740. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77404-6_53

    Chapter  Google Scholar 

  23. Lamani, A., Potop-Butucaru, M.G., Tixeuil, S.: Optimal deterministic ring exploration with oblivious asynchronous robots. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 183–196. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13284-1_15

    Chapter  Google Scholar 

  24. Mendes de Leon, C.F., Ali, T., Nilsson, C., Weuve, J., Rajan, K.B.: Longitudinal effects of social network diversity on mortality and disability among elderly. Innovation Aging 1(suppl 1), 431 (2017)

    Google Scholar 

  25. Michail, O., Spirakis, P.G.: Simple and efficient local codes for distributed stable network construction. Distrib. Comput. 29(3), 207–237 (2016). https://doi.org/10.1007/s00446-015-0257-4

    Article  MathSciNet  MATH  Google Scholar 

  26. Pancs, R., Vriend, N.J.: Schelling’s spatial proximity model of segregation revisited. J. Public Econ. 91(1), 1–24 (2007)

    Article  Google Scholar 

  27. Reagans, R., Zuckerman, E.W.: Networks, diversity, and productivity: the social capital of corporate R&D teams. Organ. Sci. 12(4), 502–517 (2001)

    Article  Google Scholar 

  28. Schelling, T.C.: Models of segregation. Am. Econ. Rev. 59(2), 488–493 (1969)

    Google Scholar 

  29. Schelling, T.C.: Dynamic models of segregation. J. Math. Sociol. 1(2), 143–186 (1971)

    Article  Google Scholar 

  30. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

    Article  MathSciNet  Google Scholar 

  31. Young, H.P.: Individual Strategy and Social Structure: An Evolutionary Theory of Institutions. Princeton University Press, Princeton (2001)

    Google Scholar 

  32. Zhang, J.: A dynamic model of residential segregation. J. Math. Sociol. 28(3), 147–170 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Opatrny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ehresmann, AL., Lafond, M., Narayanan, L., Opatrny, J. (2019). Distributed Pattern Formation in a Ring. In: Censor-Hillel, K., Flammini, M. (eds) Structural Information and Communication Complexity. SIROCCO 2019. Lecture Notes in Computer Science(), vol 11639. Springer, Cham. https://doi.org/10.1007/978-3-030-24922-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24922-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24921-2

  • Online ISBN: 978-3-030-24922-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics