Skip to main content

Beneficial Biofilm Applications in Food and Agricultural Industry

  • Chapter
  • First Online:
Health and Safety Aspects of Food Processing Technologies

Abstract

Biofilm is defined as a community in which microorganisms adhere to a living or inanimate surface, embedded in a gelatinous layer in a self-produced matrix of extra polymeric substances, adhered to each other, to a solid surface or to an interface. Adverse environmental conditions caused biofilm formation by inducing transition of microorganisms from planktonic cell form to sessile cell form and altered metabolism of bacteria in biofilms. Bacteria in biofilm matrix produce the specific secondary metabolites and gain robustness. Although biofilms are often accepted as potentially destructive for clinical and other industrial fields, many biofilms are beneficial and there are several reports related to the positive use of these biofilms. Beneficial biofilms could be used for wide applications (antibacterial, food fermentation, biofertilizer, filtration, biofouling, prevention of corrosion, antimicrobial agents, wastewater treatment, bioremediation and microbial fuel cells) in food, agricultural, medical, environment and other fields. According to previous reports, certain strains including Bacillus spp. (B. subtilis, B. thuringiensis, B. brevis, B. licheniformis, Bacillus polymyxa, Bacillus amyloliquefaciens) Lactobacillus spp. (L. casei, L. paracasei, L. acidophilus, L. plantarum, L. reuteri) Enterococcus spp. (E. casseliflavus, E. faecalis, E. faecium), Pseudomonas spp. (P. fluorescens, P. putida and P. chlororaphis), Acetobacter aceti, some fungi and Pseudoalteromonas sp., etc. led to beneficial biofilm formation. Food and agricultural industry may mostly benefit from biofilms in terms of their biochemical, fermentative, antimicrobial and biotechnological characteristics. Microorganisms in biofilm matrix could positively affect quality characteristics of food products such as texture, biochemical composition and sensorial properties via the production of specific secondary metabolites. Additionally, biofilms have an importance in water and soil safety of agricultural land. The present chapter highlights beneficial biofilm applications in food and agriculture industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal S, Sharma K, Swanson BG, Yüksel GÜ, Clarck S (2006) Nonstarter lactic acid bacteria biofilms and calcium lactate crystals in cheddar cheese. J Dairy Sci 89:1452–1466

    CAS  PubMed  Google Scholar 

  • Alimoradi S, Faraj R, Torabian A (2018) Effects of residual aluminum on hybrid membrane bioreactor (Coagulation-MBR) performance, treating dairy wastewater. Chem Eng Process Process Intensif 133:320–324

    CAS  Google Scholar 

  • Ayala FR, Bauman C, Cogliati S, Lenini C, Bartolini M, Grau R (2017) Microbial flora, probiotics, Bacillus subtilis and the search for a long and healthy human longevity. Microbial Cell 4(4):133–136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aziza F, Mettler E, Daudin JJ, Sanaa M (2006) Stochastic, compartmental, and dynamic modeling of cross-contamination during mechanical smearing of cheeses. Risk Anal 26(3):731–745

    PubMed  Google Scholar 

  • Babu SV, Triveni S, Reddy RS, Sathyanarayana J (2017) Persistence of PSB-fungi biofilmed biofertilizer in the soils and its effect on growth and yield of maize. Int J Curr Microbiol App Sci 6(12):1812–1821

    Google Scholar 

  • Baht SA, Singh S, Singh J, Kumar S, Bhawana VAP (2018) Bioremediation and detoxification of industrial wastes by earthworms: vermicompost as powerful crop nutrient in sustainable agriculture. Bioresour Technol 252:172–179

    Google Scholar 

  • Banks JM, Williams AG (2004) The role of the nonstarter lactic acid bacteria in Cheddar cheese ripening. Int J Dairy Technol 57(2/3):145–152

    CAS  Google Scholar 

  • Basu S, Rabara R, Negi S (2017) Towards a better greener future - an alternative strategy using biofertilizers. I: Plant growth promoting bacteria. Plant Gene 12:43–49

    Google Scholar 

  • Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci U S A 110:E1621–E1630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beech IB, Sunner J (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186

    CAS  PubMed  Google Scholar 

  • Benarjee G, Ray AK (2017) The advancement of probiotics research and its application in fish farming industries. Res Vet Sci 115:66–77

    Google Scholar 

  • Bennett JW, Faison B (1997) Use of fungi in biodegradation. In: Hurst CJ (ed) Manual of environmental microbiology. ASM Press, Washington, pp 758–765

    Google Scholar 

  • Berlanga M, Guerrero R (2016) Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb Cell Fact 15(165):1–11

    Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13(669):1–10

    Google Scholar 

  • Blenkinsop SA, Costerton JW (1991) Understanding bacterial biofilms. Trends Biotechnol 9:138–143

    Google Scholar 

  • Carraro L, Fasolato L, Montemurro F, Martino ME, Balzan S, Servili M, Novelli E, Cardazzo B (2014) Polyphenols from olive mill waste affect biofilm formation and motility in Escherichia coli K-12. J Microbial Biotechnol 7:265–275

    CAS  Google Scholar 

  • Carvalho F, Prazeres AR, Rivas J (2013) Cheese whey wastewater: characterization and treatment. Sci Total Environ 445(446):385–396

    PubMed  Google Scholar 

  • Cheng KC, Demirci A, Catchmark JM (2010) Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol 87:445–456

    CAS  PubMed  Google Scholar 

  • Chiacchierini E, Restuccia D, Vinci G (2004) Bioremediation of food industry effluents: recent applications of free and immobilised polyphenoloxidases. Food Sci Technol Int 10(6):373–382

    CAS  Google Scholar 

  • Das N, Basak LVG, Salam JA, Abigail EA (2017) Application of biofilms on remediation of pollutants – an overview. J Microbiol Biotech Res 2(5):783–790

    Google Scholar 

  • Dash HR, Mangwani N, Chakraborty J, Kumari S, Das S (2013) Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 97:561–571

    CAS  PubMed  Google Scholar 

  • Didienne R, Defargues C, Callon C, Meylheuc T, Hulin S, Montel MC (2012) Characteristics of microbial biofilm on wooden vats (‘gerles’) in PDO Salers cheese. Int J Food Microbiol 156:91–101

    CAS  PubMed  Google Scholar 

  • Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15(2):155–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards SJ, Kjellerup BV (2013) Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol 97(23):9909–9921

    CAS  PubMed  Google Scholar 

  • Engevik MA, Versalovic J (2017) Biochemical features of beneficial microbes: foundations for therapeutic microbiology. Microbiol Spectr 5(5):1–54

    CAS  Google Scholar 

  • Ercan D, Demirci A (2015) Current and future trends for biofilm reactors for fermentation processes. Crit Rev Biotechnol 35(1):1–14

    CAS  PubMed  Google Scholar 

  • Farahmand N, Raeisi SN, Ouoba I, Sutherland J, Ghoddusi H (2013) Screening beneficial dairy Lactobacillus spp. for bioflm formation under different environmental stresses. J Bacteriol Parasitol 4(4):124

    Google Scholar 

  • France DC (2016) Anticorrosive influence of Acetobacter aceti biofilms on carbon steel. J Mater Eng Perform 25(9):3580–3589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furukawa S, Watanabe T, Toyama H, Morinaga Y (2013) Significance of microbial symbiotic coexistence in traditional fermentation. J Biosci Bioeng 116(5):533–539

    CAS  PubMed  Google Scholar 

  • Gaglio R, Cruciata M, Gerlando RD, Scatassa ML, Cardamone C, Mancuso I, Sardina MT, Moschetti G, Portolano B, Settanni L (2015) Microbial activation of wooden vats used for traditional cheese production and evolution of neoformed biofilms. Appl Environ Microbiol 82(2):585–595

    PubMed  Google Scholar 

  • Galgano F, Condelli N, Caruso MC, Colangelo MA, Favati F (2015) Probiotics and prebiotics in fruits and vegetables: technological and sensory aspects. In: Rai VR, Bai JA (eds) Beneficial microbes in fermented and functional foods. CRC Press Taylor Francis Group, Boca Raton, pp 189–206

    Google Scholar 

  • Galinari E, Nóbrega JE, Andrade NJ, Ferreira CLLF (2014) Microbiological aspects of the biofilm on wooden utensils used to make a Brazilian artisanal cheese. Braz J Microbiol 45(2):713–720

    PubMed  PubMed Central  Google Scholar 

  • Garcia AP, Romero D, Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22:187–193

    Google Scholar 

  • Gomez NC, Ramiro JMP, Quecan BXV, Franco BDGM (2016) Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 biofilms formation. Front Microbiol 7:1–15

    Google Scholar 

  • Grounta A, Panagou EZ (2014) Mono and dual species biofilm formation between Lactobacillus pentosus and Pichia membranifaciens on the surface of black olives under different sterile brine conditions. Ann Microbiol 64:1757–1767

    CAS  Google Scholar 

  • Grounta A, Doulgeraki AI, Panagou EZ (2015) Quantification and characterization of microbial biofilm community attached on the surface of fermentation vessels used in green table olive processing. Int J Food Microbiol 203:41–48

    CAS  PubMed  Google Scholar 

  • Guerrieri E, Niederhäusern S, Messi P, Sabia C, Iseppi R, Anacarso I, Bondi M (2009) Use of lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes in a small-scale model. Food Control 20:861–865

    CAS  Google Scholar 

  • Guillier L, Stahl V, Hezard B, Notz E, Briandet R (2008) Modelling the competitive growth between Listeria monocytogenes and biofilm microflora of smear cheese wooden shelves. Int J Food Microbiol 128:51–57

    CAS  PubMed  Google Scholar 

  • Gulgor G, Korukluoglu M (2016) Biofilms and their advantages/disadvantages in food industry. In: Vilas AM (ed) Antimicrobial research: novel bioknowledge and educitional programs. Formatex Publishing, Badajoz, pp 308–314

    Google Scholar 

  • Gupta S, Anand S (2018) Induction of pitting corrosion on stainless steel (grades 304 and 316) used in dairy industry by biofilms of common spore formers. Int J Dairy Technol 71(2):519–531

    CAS  Google Scholar 

  • Hall SL, Costerton JW, Stoodley P (2004) Bacterial biofilms:from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Google Scholar 

  • Heperkan D (2013) Microbiota of table olive fermentations and criteria of selection for their use as starters. Front Microbiol 4(143):1–11

    Google Scholar 

  • Hettiarachchi RP, Dharmakeerthi RS, Seneviratne G, Jayakody AN, Silva E, Gunathilake T, Thewarapperuma A, Maheepala CK (2014) Availability and leaching of nutrients after biofilm biofertilizer applications into a red yellow podsolic soil. J Rubber Res Inst Sri Lanka 94:43–53

    Google Scholar 

  • Hinsa SM, Espinosa-Urgel M, Ramos JL, O’Toole GA (2003) Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 49:905–918

    CAS  PubMed  Google Scholar 

  • Hirth N, Topp E, Dörfler U, Stupperich E, Munch JC, Schroll R (2016) An effective bioremediation approach for enhanced microbial degradation of the veterinary antibiotic sulfamethazine in an agricultural soil. Chem Biol Technol Agric 3(29):1–11

    Google Scholar 

  • Horemans B, Albers P, Springael D (2016) The biofilm concept from a bioremediation perspective. In: Lear G (ed) Biofilms in bioremediation. Caister Academic Press, Norfolk, pp 23–41

    Google Scholar 

  • Hossain MI, Sadekuzzaman M, Ha SD (2017) Probiotics as potential alternative biocontrol agents in the agriculture and food industries: a review. Food Res Int 100:63–73

    CAS  PubMed  Google Scholar 

  • Houdt RV, Michiels CW (2010) Biofilm formation and the Food industry, a focus on the bacterial outersurface. J Appl Microbiol 109:1117–1131

    PubMed  Google Scholar 

  • Ivanova TI, Ivanov R (2013) Anticorrosion effect of biofilm forming by Lactobacillus strains on metal surfaces. Bulgarian J Agr Sci 19(2):83–85

    Google Scholar 

  • Ivanova TI, Ivanov RI (2014) Study of biofilm formed by lactic acid bacteria on the surface of mild steel. J Life Sci 8:799–804

    Google Scholar 

  • Ivanova TI, Ivanov R, Iliev I, Ivanova I (2009) Study of anticorrosion effect of eps from nowstrains Lactobacillus delbrueckii. Biotechnol Biotechnol 23:705–708

    Google Scholar 

  • Jahid IK, Ha SD (2014) The paradox of mixed-species biofilms in the context of food safety. Comprehens Rev Food Sci Food Saf 13:1–22

    Google Scholar 

  • Jara MJS, Ilabaca A, Vega M, Garcia A (2016) Biofilm forming Lactobacillus: new challenges for the development of probiotics. Microorganisms 4(35):1–14

    Google Scholar 

  • Jefferson KK (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236:163–173

    CAS  PubMed  Google Scholar 

  • Jones SE, Versalovic J (2009) Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol 9(35):1–9

    Google Scholar 

  • Kalkan S, Öztürk D, Selimoğlu BS (2018) Determining some of the quality characteristics of probiotic yogurts manufactured by using microencapsulated Saccharomyces cerevisiae var. boulardii. Turk J Veterin Anim Sci 42:617–623

    CAS  Google Scholar 

  • Kasim WA, Gaafar RM, Ali RMA, Omar MN, Hewait HM (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Annals Agric Sci 61(2):217–227

    Google Scholar 

  • Kerry RG, Patra JK, Gouda S, Park Y, Shin HS, Das G (2018) Benefaction of probiotics for human health: a review. J Food Drug Anal 26:927–939

    Google Scholar 

  • Khan MU, Chniti S, Owaid MN, Hussain MB, Shariati MA (2018) An overview on properties and internal characteristics of anaerobic bioreactors of food waste. J Nutr Health Food Eng 8(4):319–322

    Google Scholar 

  • Kokare CR, Chakraborty S, Khopade AN, Mahadik KR (2009) Biofilm: importance and applications. Indian J Biotechnol 8:159–168

    CAS  Google Scholar 

  • Kshirsagar AD (2013) Application of bioremediation process for wastewater treatment using aquatic fungi. Int J Curr Res 5(07):1737–1739

    CAS  Google Scholar 

  • Laranjo M, Elias M, Fraqueza MJ (2017) The use of starter cultures in traditional meat products. Hindawi J Food Qual 2017:1–18

    Google Scholar 

  • Lee AK, Buehler MG, Newman DK (2006) Influence of a dual-species biofilm on the corrosion of mild steel. Corros Sci 48:165–178

    CAS  Google Scholar 

  • Lens P (2011) Biofilms for environmental biotechnology in support of sustainable development. Virulence 2(5):478–479

    PubMed  Google Scholar 

  • Licitra G, Ogier JC, Parayre S, Pediliggieri C, Carnemolla TM, Falentin H, Madec MN, Carpino S, Lortal S (2007) Variability of bacterial biofilms of the “tina” wood vats used in the ragusano cheese-making process. Appl Environ Microbiol 73(21):6980–6987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay D, Holy A (2006) What Food safety professionals should know about bacterial biofilms. Br Food J 108(1):27–37

    Google Scholar 

  • Lortal S, Blasi AD, Madec MN, Pediliggieri C, Tuminello L, Tanguy G, Fauquant J, Lecuona Y, Campo P, Carpino S, Licitra G (2009) Tina wooden vat biofilm: a safe and highly efficient lactic acid bacteria delivering system in PDO Ragusano cheese making. Int J Food Microbiol 132:1–8

    CAS  PubMed  Google Scholar 

  • Malusa E, Paszt LS, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Scientific World Journal 2012:1–12

    Google Scholar 

  • Mangwani N, Kumari S, Das S (2015) Bacterial biofilms and quorum sensing: fidelity in bioremediation technology. Biotechnol Genet Eng Rev 32:43–73

    Google Scholar 

  • Manzano JD, Ruiz CO, Gallego JB, Lopez FNA, Fernandez AG, Diaz RJ (2012) Biofilm formation on abiotic and biotic surfaces during Spanish style green table olive fermentation. Int J Food Microbiol 157:230–238

    Google Scholar 

  • Marapatla NS (2014) Study of biofilmed biofertilizers to improve crop production and disease control in chickpea. Master Thesis, Department of Agricultural Microbiology, Acharya N.G. Ranga Agricultural University., 119p

    Google Scholar 

  • Mariani C, Briandet R, Chamba JF, Notz E, Pantiez AC, Eyoug RN, Oulahal N (2007) Biofilm ecology of wooden shelves used in ripening the french raw milk smear cheese reblochon de savoie. J Dairy Sci 90(4):1653–1661

    CAS  PubMed  Google Scholar 

  • Masry MH, Bestawy E, Adl NI (2004) Bioremediation of vegetable oil and grease from polluted wastewater using a sand biofilm system. World J Microbiol Biotechnol 20:551–557

    Google Scholar 

  • Mcnamara CJ, Anastasiou CC, O’Flaherty V, Mitchell R (2008) Bioremediation of olive mill wastewater. Int Biodeter Biodegr 61:127–134

    CAS  Google Scholar 

  • Morikawa M (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng 101(1):1–8

    CAS  PubMed  Google Scholar 

  • Mueller JG, Cerniglia CE, Pritchard PH (1996) Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Crawford RL, Crawford DL (eds) Bioremediation principles and applicaitons. Cambridge University Press, Cambridge, pp 125–194

    Google Scholar 

  • Narekumar J, Sathishkumar K, Sarankumar RK, Murugan K, Rajasekar A (2017) An anticorrosive study on potential bioactive compound produced by Pseudomonas aeruginosa TBH2 against the biocorrosive bacterial biofilm on copper metal. J Mol Liq 243:706–713

    Google Scholar 

  • Örnek D, Wood TK, Hsu CH, Mansfeld F (2002) Corrosion control using regenerative biofilms (CCURB) on brass in different media. Corros Sci 44:2291–2302

    Google Scholar 

  • Pandey PK, Bharti V, Kumar K (2014) Biofilm in aquaculture production. Afr J Microbiol Res 8(13):1434–1443

    Google Scholar 

  • Petrova OE, Sauer K (2012) Sticky situations: key components that control bacterial surface attachment. J Bacteriol 194:2413–2425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi N (2009) Beneficial biofilms: wastewater and other industrial applications. In: Fratamico PM, Annous BA, Gunther NW (eds) Biofilms in the food and beverage industries. Woodhead Publishing Series in Food Science, Technology and Nutrition, 4th edn. Woodhead, Cambridge, pp 474–498

    Google Scholar 

  • Qureshi N, Karcher P, Cotta M, Blaschek HP (2004) High-productivity continuous biofilm reactor for butanol production. Appl Biochem Biotechnol 113(116):713–721

    PubMed  Google Scholar 

  • Rafique M, Hayat K, Mukhtar T, Amna, Khan AA, Afridi MS, Hussain T, Sultan T, Munis MFH, Imran M, Chaudhary HJ (2015) Bacterial biofilm formation and its role against agricultural pathogens. In: Méndez-Vilas A (ed) The battle against microbial pathogens: basic science, technological advances and educational programs. Formatex Publishing, Badajoz

    Google Scholar 

  • Raganati F, Olivieri G, Procentese A, Russo ME, Salatino P, Marzocchella A (2013) Butanol production by bioconversion of cheese whey in a continuous packed bed reactor. Bioresour Technol 138:259–265

    CAS  PubMed  Google Scholar 

  • Rajendran A, Fox T, Reis CR, Wilson B, Hu B (2018) Deposition of manure nutrients in a novel mycoalgae biofilm for nutrient management. Biocatal Agric Biotechnol 14:120–128

    Google Scholar 

  • Rajpal H, Joykutty L, Golden C (2017) Assaying the formation of beneficial biofilms by lactic acid bacteria and the effect of ayurvedic plant extracts on their enhancement. J Emerg Investig:1–7

    Google Scholar 

  • Ramey BE, Koutsoudis M, Bodman SB, Fuqua C (2004) Biofilm formation in plant–microbe associations. Curr Opin Microbiol 7:602–609

    CAS  PubMed  Google Scholar 

  • Ratha HAA, Jasim SJ (2018) Effect of biofilm with biofertilizer of Pseudomonas fluorescens and Rhizobium leguminosarum, chemical fertilizer level and addition technique on some growth and yield traits of wheat (Triticum asetivum L.). Iraqi J Agric Sci 49(4):646–654

    Google Scholar 

  • Robertson SR, McLean RJC (2015) Beneficial biofilms. Bioengineering 2(4):437–448

    CAS  Google Scholar 

  • Rosche B, Li XZ, Hauer B, Schmid A, Buehler K (2009) Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol 27(11):636–643

    CAS  PubMed  Google Scholar 

  • Rudrappa T, Biedrzycki ML, Bais HP (2008) Causes and consequences of plant-associated biofilms. FEMS Microbiol Ecol 64:153–166

    CAS  PubMed  Google Scholar 

  • Santoyo G, Hagelsieb GM, Mosqueda MCO, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    CAS  PubMed  Google Scholar 

  • Sarjit A, Tan SM, Dykes GA (2015) Surface modification of materials to encourage beneficial biofilm formation. Bioengineering 2(4):404–422

    Google Scholar 

  • Scatassa ML, Gaglio R, Macaluso G, Francesca N, Randazzo W, Cardamone C, Grigoli AD, Moschetti G, Settanni L (2015) Transfer, composition and technological characterization of the lactic acid bacterial populations of the wooden vats used to produce traditional stretched cheeses. Food Microbiol 52:31–41

    CAS  PubMed  Google Scholar 

  • Sehar S, Naz I (2016) Role of the biofilms in wastewater treatment. In: Dhanasekaran D (ed) Microbial biofilms - importance and applications. InTech Open, London, pp 121–144

    Google Scholar 

  • Seneviratne G, Wijepala PC (2011) Biofilm biofertilizers for incorporating biodiversity benefits and reducing environmentally harmful subsidies in agriculture. Sri Lanka For 38:59–63

    Google Scholar 

  • Seneviratne G, Zavahir JS, Bandara WMMS, Weerasekara MLMAW (2008) Fungal-bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 24:739–743

    CAS  Google Scholar 

  • Seneviratne G, Jayasekara APDA, Silva MSDL, Abeysekara UP (2016) Developed microbial biofilms can restore deteriorated conventional agricultural soils. Soil Biol Biochem 43:1059–1062

    Google Scholar 

  • Shah MP (2018) Bioremediation-waste water treatment. J Bioremed Biodegr 9(1):1–10

    Google Scholar 

  • Shi X, Zhu X (2009) Biofilm formation and food safety in food industries. Trends Food Sci Technol 20:407–413

    CAS  Google Scholar 

  • Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14(9):389–396

    CAS  PubMed  Google Scholar 

  • Singhalage ID, Seneviratne G, Madawala HMSP, Wijepala PC (2019) Profitability of strawberry (Fragaria ananassa) production with biofilmed biofertilizer application. Sci Hortic 243:411–413

    Google Scholar 

  • Somers EB, Johnson ME, Wong ACL (2001) Biofilm formation and contamination of cheeseby nonstarter lactic acid bacteria in the dairy environment. J Dairy Sci 84:1926–1936

    CAS  PubMed  Google Scholar 

  • Song D, Ibrahim S, Hayek S (2012) Recent application of probiotics in food and agricultural science. In: Rigobelo E (ed) Probiotics. InTech Open, London, pp 1–34

    Google Scholar 

  • Speranza B, Sinigaglia M, Corbo MR (2009) Nonstarter lactic acid bacteria biofilms: a means to control the growth of Listeria monocytogenes in soft cheese. Food Control 20:1063–1067

    CAS  Google Scholar 

  • Srey S, Jahid IK, Ha SD (2013) Biofilm formation in food industries: a food safety concern. Food Control 31:572–585

    Google Scholar 

  • Stavridou I, Forzi L (2011) Biofilms: friend or foe? Virulence 2(5):475–476

    PubMed  Google Scholar 

  • Stepanovic S, Vukovic D, Hola V, Bonaventura GD, Djukic S, Cirkovic I, Ruzicka F (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115:891–899

    PubMed  Google Scholar 

  • Sudadi S, Triharyanto E (2018) The application of biofilm biofertilizer-based organic fertilizer to increase available soil nutrients and spinach yield on dryland (a study case in Lithosol soil type). Earth Environ Sci 200:1–7

    Google Scholar 

  • Thassitou PK, Arvanitoyannis IS (2001) Bioremediation: a novel approach to food waste management. Trends Food Sci Technol 12:185–196

    CAS  Google Scholar 

  • Todhanakasem T (2013) Microbial biofilm in the industry. Afr J Microbiol Res 7(17):1625–1634

    CAS  Google Scholar 

  • Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N (2016) Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem 80(1):7–12

    CAS  PubMed  Google Scholar 

  • Trimanne TLS, Perera TA, Anuradha EAS, Seneviratne G, Kulasooriya SA (2018) The effect of flavonoid naringenin coupled with the developed biofilm Azorhizobium caulinodans-Aspergillus spp. on increase in rice yields in conventionally and organically grown rice. Int J Plant Sci 1:1–6

    Google Scholar 

  • Tsveteslava II, Ivanov R (2014) Exopolysaccharides from lactic acid bacteria as corrosion inhibitors. J Life Sci 8:940–945

    CAS  Google Scholar 

  • Turki Y, Mehri I, Lajnef R, Rejab AB, Khessairi A, Cherif H, Ouzari H (2017) Biofilms in bioremediation and wastewater treatment: characterization of bacterial community structure and diversity during seasons in municipal wastewater treatment process. Environ Sci Pollut Res 24(4):3519–3530

    Google Scholar 

  • Velmourougane K, Prasanna R, Saxena AK (2017) Agriculturally important microbial biofilms: present status and future prospects. J Basic Microbiol 57:548–573

    PubMed  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73(7):1163–1172

    CAS  Google Scholar 

  • Vilamakis H (2011) The world of biofilms. Virulence 2(5):431–434

    Google Scholar 

  • Vos WM (2015) Microbial biofilms and the human intestinal microbiome. NPJ Biofilms Microbiomes 1:1–3

    Google Scholar 

  • Wang S, Rao NC, Oui R, Moletta R (2009) Performance and kinetic evaluation of anaerobic moving bed biofilm reactor for treating milk permeate from dairy industry. Bioresour Technol 100:5641–5647

    CAS  PubMed  Google Scholar 

  • Wesselin W (2015) Beneficial biofilms in marine aquaculture? Linking points of biofilm formation mechanisms in Pseudomonas aeruginosa and Pseudoalteromonas species. Bioengineering 2(3):104–125

    Google Scholar 

  • Wingender J, Flemming HC (2011) Biofilms in drinking water and their role as reservoir for pathogens. Int J Hyg Environ Health 214:417–423

    PubMed  Google Scholar 

  • Winkelströter LK, Teixeira FBR, Silva EP, Alves VF, Martinis ECP (2014) Unraveling microbial biofilms of importance for food microbiology. Microb Ecol 68:35–46

    PubMed  Google Scholar 

  • Wood TK, Ornek D, Mansfeld F, Rey MD (2002) Preventing corrosion with beneficial biofilms. United State Patent Application Publication, Sheet 1 of 10 US 2002/0132126 A1, p 1-10

    Google Scholar 

  • Wood TK, Hong SH, Ma Q (2010) Engineering biofilm formation and dispersal. Trends Biotechnol 29(2):87–94

    PubMed  PubMed Central  Google Scholar 

  • Wood TL, Guha R, Tang L, Geitner M, Kumar M, Wood TK (2016) Living biofouling-resistant membranes as a model for the beneficial use of engineered biofilms. Proc Natl Acad Sci U S A 113:E2802–E2811. 1-10

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe BE, Dutton RJ (2015) Fermented foods as experimentally tractable microbial ecosystems. Cell 161(1):49–55

    Google Scholar 

  • Yahav S, Berkovich Z, Ostrov I, Reifen R, Shemesh M (2018) Encapsulation of beneficial probiotic bacteria in extracellular matrix from biofilm-forming Bacillus subtilis. Artif Cells Nanomed Biotechnol 46:974–982

    CAS  PubMed  Google Scholar 

  • Zottola EA, Sasahara KC (1999) Microbial biofilms in the food processing industry - should they be a concern? Int J Food Microbiol 23:125–148

    Google Scholar 

  • Zuo R (2007) Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl Microbiol Biotechnol 76:1245–1253

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ünal Turhan, E., Erginkaya, Z., Korukluoğlu, M., Konuray, G. (2019). Beneficial Biofilm Applications in Food and Agricultural Industry. In: Malik, A., Erginkaya, Z., Erten, H. (eds) Health and Safety Aspects of Food Processing Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-24903-8_15

Download citation

Publish with us

Policies and ethics