Skip to main content

A Simple Model of Double Dynamics on Lie Groups

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 229))

Abstract

We study the dynamics of the rigid rotator on the group manifold of SU(2) as an instance of dynamics on Lie groups together with a dual model whose carrier space is the Borel group \(SB(2,\mathbb {C})\), the Lie Poisson dual of SU(2). We thus introduce a parent action on the Drinfel’d double of the above mentioned groups, which describes the dynamics of a system with twice as many degrees of freedom as the two starting partners. Through a gauging procedure of its global symmetries both the rigid rotor and the dual model are recovered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Notice however that, in case G is a compact group, such as SU(2), its cotangent bundle is truly diffeomorphic to its Drinfel’d double, while the cotangent bundle of its dual, \(SB(2\mathbb {C})\) for SU(2), is only a deformation of the double.

  2. 2.

    Noncommutative gauge theories usually require that the gauge group be enlarged (see for example [26] for a review). The differential calculus itself may be bigger than in the commutative case (see for example [27] for an occurrence of this phenomenon in three dimensions and [28] for an application to two-dimensional gauge theory.

    In order to cure nonrenormalizability of noncommutative field theories auxiliary terms have to be added to the action functional, which involve auxiliary parameters. This is the case of simple scalar field theories such as the Grosse-Wulkenhaar model [29], or the translation-invariant model [30].

  3. 3.

    We denote with the symbol \(\bowtie \) the Lie algebra structure of \(\mathfrak {d}\) as a sum of two non-Abelian, non commuting subalgebras, each one of them acting on its dual.

  4. 4.

    The issue of Poisson–Lie symmetries for dynamics such as those discussed in this paper is further elucidated and better understood in the context of field theory in a recent paper [12], where a higher dimensional analogue of the IRR is analyzed. We refer to that for details.

References

  1. C. Klimčík, P. Ševera, Dual non-Abelian duality and the Drinfel’d double. Phys. Lett. B 351(4), 455-462 (1995). [hep-th/9502122]; C. Klimčik, P. Severa, Poisson-Lie T-duality and loop groups of Drinfel’d doubles. Phys. Lett. B 372, 65 (1996). [hep-th/9512040]

    Article  ADS  MathSciNet  Google Scholar 

  2. C. Klimčík, Poisson-Lie T-duality. Nucl. Phys. Proc. Suppl. 46, 116 (1996). [hep-th/9509095]

    Article  ADS  MathSciNet  Google Scholar 

  3. M.A. Lledó, V.C. Varadarajan, SU(2) Poisson-Lie T duality. Lett. Math. Phys. 45, 247 (1998)

    Article  MathSciNet  Google Scholar 

  4. N. Hitchin, Generalized Calabi-Yau manifolds. Q. J. Math. 54, 281–308 (2003). [math/0209099]

    Article  MathSciNet  Google Scholar 

  5. N. Hitchin, Lectures on generalized geometry. [arXiv:1008.0973 [math.DG]]

  6. M. Gualtieri, Generalized Complex Geometry, Ph.D. Thesis, 2004. [math/0703298 [math.DG]]

    Google Scholar 

  7. C. Hull, R.A. Reid-Edwards, Non-geometric backgrounds, doubled geometry and generalised T-duality. JHEP 09(2009), 014 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  8. C. Hull, B. Zwiebach, Double field theory. JHEP 09, 099 (2009). [arXiv:0904.4664 [hep-th]]; C.M. Hull, B. Zwiebach, The gauge algebra of double field theory and courant brackets. JHEP 2009(09), 090 (2009). [arXiv:0908.1792 [hep-th]]

  9. V.G. Drinfel’d, Hamiltonian structures of Lie groups, Lie bialgebras and the geometric meaning of the classical Yang–Baxter equation. Sov. Math. Dokl. 27, (1983) 68–71; V.G. Drinfel’d, Quantum groups. in Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), (American Mathematical Society, Providence, 1987) pp. 798–820

    Google Scholar 

  10. M.A. Semenov-Tian-Shansky, Poisson Lie groups, quantum duality principle, and the quantum double. Theor. Math. Phys. 93, 1292 (1992). [Teor. Mat. Fiz. 93N2 (1992) 302]. [hep-th/9304042]

    Google Scholar 

  11. V.E. Marotta, F. Pezzella, P. Vitale, Doubling, T-duality and generalized geometry: a simple model. JHEP (2018). [arXiv:1804.00744 [hep-th]]

  12. V.E. Marotta, F. Pezzella, P. Vitale, In preparation

    Google Scholar 

  13. G. Marmo, A. Simoni, A. Stern, Poisson-Lie group symmetries for the isotropic rotor. Int. J. Mod. Phys. A 10, 99 (1995). [hep-th/9310145]

    Article  ADS  Google Scholar 

  14. G. Marmo, A. Ibort, A new look at completely integrable systems and double Lie groups. Contemp. Math. 219, 159 (1998)

    Article  MathSciNet  Google Scholar 

  15. A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics. Phys. Lett. B 242, 163 (1990); A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars. Nucl. Phys. B 350, 395 (1991)

    Google Scholar 

  16. M.J. Duff, Duality rotations in string theory. Nucl. Phys. B 335, 610 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  17. W. Siegel, Superspace duality in low-energy superstrings. Phys. Rev. D 48, 2826 (1993). [hep-th, 9305073]; W. Siegel, Two vierbein formalism for string inspired axionic gravity. Phys. Rev. D 47, 5453 (1993). [hep-th, 9302036]; W. Siegel, Manifest duality in low-energy superstrings, in “Berkeley, Proceedings, Strings, vol. 93, pp. 353–363. [hep-th/9308133]; W. Siegel, Manifest Lorentz invariance sometimes requires nonlinearity. Phys. Rev. D 47(1993), 5453 (1993)

    Google Scholar 

  18. K. Sfetsos, Duality-invariant class of two-dimensional field theories. Nucl. Phys. B 561, 316–340 (1999). [hep-th/9904188]

    Article  ADS  MathSciNet  Google Scholar 

  19. I. Calvo, F. Falceto, D. Garcia-Alvarez, Topological Poisson sigma models on Poisson Lie groups. JHEP 0310, 033 (2003). [hep-th/0307178]

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Stern, Hamiltonian approach to Poisson Lie T-duality. Phys. Lett. B 450, 141 (1999). [hep-th/9811256]; A. Stern, T-duality for coset models. Nucl. Phys. B 557, 459 (1999). [hep-th/9903170]

    Article  ADS  Google Scholar 

  21. R. Blumenhagen, F. Hassler, D. Lüst, Double field theory on group manifolds. JHEP 1502, 001 (2015). [arXiv:1410.6374 [hep-th]]; R. Blumenhagen, P. du Bosque, F. Hassler, D. Lüst, Generalized metric formulation of double field theory on group manifolds. JHEP 1508, 056 (2015). [arXiv:1502.02428 [hep-th]]; F. Hassler, Poisson-Lie T-duality in double field theory. [arXiv:1707.08624 [hep-th]]

  22. H. Bateman, On dissipative systems and related variational principle. Phys. Rev. 38, 815 (1931)

    Article  ADS  Google Scholar 

  23. I. Bakas, D. Lüst, 3-cocycles, non-associative star-products and the magnetic paradigm of R-flux string vacua. JHEP 1401, 171 (2014). [arXiv:1309.3172 [hep-th]]

    Article  ADS  Google Scholar 

  24. G.V. Kupriyanov, R.J. Szabo, Symplectic realization of electric charge in fields of monopole distributions. Phys. Rev. D 98(4), 045005 (2018). [arXiv:1803.00405 [hep-th]]

  25. R.J. Szabo, Quantization of magnetic poisson structures. arXiv:1903.02845 [hep-th]

  26. R.J. Szabo, Quantum field theory on noncommutative spaces. Phys. Rept. 378, 207 (2003). [hep-th/0109162]

    Article  ADS  MathSciNet  Google Scholar 

  27. G. Marmo, P. Vitale, A. Zampini, Noncommutative differential calculus for Moyal subalgebras. J. Geom. Phys. 56, 611 (2006). [hep-th/0411223]; Derivation based differential calculi for noncommutative algebras deforming a class of three dimensional spaces. J. Geom. Phys. 136, 104 (2019). [arXiv:1805.06300 [math.QA]]

  28. P. Martinetti, P. Vitale, J.C. Wallet, Noncommutative gauge theories on \(\mathbb{R}^2_\theta \) as matrix models. JHEP 1309, 051 (2013). [arXiv:1303.7185 [hep-th]]

    Article  ADS  Google Scholar 

  29. H. Grosse, R. Wulkenhaar, Renormalization of \(\phi ^4\) theory on noncommutative \({\mathbb{R}}^2\) in the matrix base. JHEP 0312, 019 (2003). [hep-th/0307017]; Renormalization of \(\phi ^4\) theory on noncommutative \({\mathbb{R}}^4\) to all orders. Lett. Math. Phys. 71, 13 (2005). [hep-th/0403232]

    Google Scholar 

  30. R. Gurau, J. Magnen, V. Rivasseau, A. Tanasa, A translation-invariant renormalizable non-commutative scalar model. Commun. Math. Phys. 287, 275 (2009). https://doi.org/10.1007/s00220-008-0658-3 [arXiv:0802.0791 [math-ph]]. A. Tanasa, P. Vitale, Curing the UV/IR mixing for field theories with translation-invariant \(\star \)products. Phys. Rev. D 81, 065008 (2010). [arXiv:0912.0200 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  31. M. de Cesare, M. Sakellariadou, P. Vitale, Noncommutative gravity with self-dual variables. Class. Quant. Grav. 35(21), 215009 (2018). [arXiv:1806.04666 [gr-qc]]

  32. P. Aschieri, L. Castellani, Noncommutative D=4 gravity coupled to fermions. JHEP 0906, 086 (2009). [arXiv:0902.3817 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  33. G. Marmo, E.J. Saletan, A. Simoni, B. Vitale, Dynamical Systems: A Differential Geometric Approach to Symmetry and Reduction (John Wiley and Sons Inc., 1985)

    Google Scholar 

  34. A.Y. Alekseev, A.Z. Malkin, Symplectic structures associated to Lie-Poisson groups. Commun. Math. Phys. 162, 147 (1994). hep-th/9303038

    Article  ADS  MathSciNet  Google Scholar 

  35. O. Babelon, D. Bernard, Phys. Lett. B 260, 81 (1991); Commun. Math. Phys. 149, 279 (1992); Int. J. Mod. Phys. A 8 , 507 (1993)

    Google Scholar 

  36. Z.-J. Liu, P. Xu, A. Weinstein, Manin triples for Lie bialgebroids. J. Differ. Geom. 45, 547–574 (1997). dg-ga/9508013v3

    Article  MathSciNet  Google Scholar 

  37. L. Freidel, F.J. Rudolph, D. Svoboda, Generalised kinematics for double field theory. JHEP 11, 175 (2017). [arXiv:1706.07089 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  38. E.K. Sklyanin, Some algebraic structures connected with the Yang-Baxter equation. Funct. Analy. Appl. 16, 263 (1982)

    Article  MathSciNet  Google Scholar 

  39. S.G. Rajeev, Non Abelian bosonization without Wess-Zumino terms. 1. New current algebra. Phys. Lett. B 217; S.G. Rajeev, Non Abelian bosonization without Wess-Zumino terms. 2. (1988). UR-1088

    Google Scholar 

  40. S.G. Rajeev, G. Sparano, P. Vitale, Alternative canonical formalism for the Wess-Zumino-Witten model. Int. J. Mod. Phys. A 9, 5469–5488 (1994). [hep-th/9312178]

    Article  ADS  MathSciNet  Google Scholar 

  41. S.G. Rajeev, A. Stern, P. Vitale, Integrability of the Wess-Zumino-Witten model as a non-ultralocal theory. Phys. Lett. B 388, 769–775 (1996). [hep-th/9602149]

    Article  ADS  MathSciNet  Google Scholar 

  42. F. Delduc, M. Magro, B. Vicedo, Integrable double deformation of the principal chiral model. Nucl. Phys. B 891, 312-321 (2105). [arXiv:1410.8066 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  43. R.A. Reid-Edwards, Bi-algebras, generalized geometry and T-duality (2010). [arXiv:1001.2479 [hep-th]]

  44. N.B. Copland, A double sigma model for double field theory. JHEP 04, 575 (2012) ; N.B. Copland, Connecting T-duality invariant theories, Nucl. Phys. B 854, 044 (2012)

    Google Scholar 

Download references

Acknowledgements

P. V. acknowledges support by COST (European Cooperation in Science and Technology) in the framework of COST Action MP1405 QSPACE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Vitale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vitale, P. (2019). A Simple Model of Double Dynamics on Lie Groups. In: Marmo, G., Martín de Diego, D., Muñoz Lecanda, M. (eds) Classical and Quantum Physics. Springer Proceedings in Physics, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-030-24748-5_19

Download citation

Publish with us

Policies and ethics