Skip to main content

Imaging Needs for Development of Novel Therapeutics in PAD

  • Chapter
  • First Online:
Imaging in Peripheral Arterial Disease

Abstract

Peripheral arterial disease is now appreciated to be a common complication of systemic atherosclerosis. Reduced blood flow to the legs from PAD causes an array of leg symptoms, and these patients are at high risk for stroke and heart attack. While the clinical problems from PAD result from reduced blood flow to the legs, advances in therapies in this field have been limited. Indeed, the last medication approved for improvement of leg symptoms in PAD was nearly 20 years ago. The future for PAD will require agents being identified and tested via novel imaging techniques that are linked to the pathophysiological progression of PAD and measure significant endpoints that are more accurate, practical, and reproducible. Here a discussion will focus on new imaging techniques that may allow us to measure response to novel therapies and correlate with improvement in clinical outcomes in PAD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fowkes FG, Rudan D, Rudan I, Aboyans V, Denenberg JO, McDermott MM, Norman PE, Sampson UK, Williams LJ, Mensah GA, Criqui MH. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382:1329–40.

    Article  PubMed  Google Scholar 

  2. Roth GA, et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol. 2017;70:1–25.

    Article  PubMed  PubMed Central  Google Scholar 

  3. McDermott MM, Kerwin DR, Liu K, Martin GJ, O’Brien E, Kaplan H, Greenland P. Prevalence and significance of unrecognized lower extremity peripheral arterial disease in general medicine practice. J Gen Intern Med. 2001;16:384–90.

    Article  CAS  PubMed  Google Scholar 

  4. Belch JJ, Topol EJ, Agnelli G, Bertrand M, Califf RM, Clement DL, Creager MA, Easton JD, Gavin JR 3rd, Greenland P, Hankey G, Hanrath P, Hirsch AT, Meyer J, Smith SC, Sullivan F, Weber MA. Critical issues in peripheral arterial disease detection and management: a call to action. Arch Intern Med. 2003;163:884–92.

    Article  PubMed  Google Scholar 

  5. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, et al. Inter-society consensus for the Management of Peripheral Arterial Disease (TASC II). Eur J Vasc Endovasc Surg. 2007;33(Suppl 1):S1–75.

    Article  PubMed  Google Scholar 

  6. Hirsch AT, Hartman L, Town RJ, Virnig BA. National health care costs of peripheral arterial disease in the Medicare population. Vasc Med. 2008;13:209–15.

    Article  PubMed  Google Scholar 

  7. McDermott MM, Liu K, Greenland P, Guralnik JM, Criqui MH, Chan C, Pearce WH, Schneider JR, Ferrucci L, Celic L, Taylor LM, Vonesh E, Martin GJ, Clark E. Functional decline in peripheral arterial disease: associations with the ankle brachial index and leg symptoms. JAMA. 2004;292:453–61.

    Article  CAS  PubMed  Google Scholar 

  8. Hiatt WR. Pharmacologic therapy for peripheral arterial disease and claudication. J Vasc Surg. 2002;36:1283–91.

    Article  PubMed  Google Scholar 

  9. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 2006;113:e463–654.

    Article  PubMed  Google Scholar 

  10. Bauer TA, Regensteiner JG, Brass EP, Hiatt WR. Oxygen uptake kinetics during exercise are slowed in patients with peripheral arterial disease. J Appl Physiol. 1999;87(2):809–16.

    Article  CAS  PubMed  Google Scholar 

  11. McDermott MM, Mehta S, Liu K, et al. Leg symptoms, the ankle-brachial index, and walking ability in patients with peripheral arterial disease. J Gen Intern Med. 1999;14(3):173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Belch JJ, Topol EJ, Agnelli G, et al. Prevention of atherothrombotic disease network. Critical issues in peripheral arterial disease detection and management: a call to action. Arch Intern Med. 2003;163:884–92.

    Article  PubMed  Google Scholar 

  13. Ouriel K. Peripheral arterial disease. Lancet. 2001;358:1257–64.

    Article  CAS  PubMed  Google Scholar 

  14. Mohler, et al. Cholesterol reduction with atorvastatin improves walking distance in patients with peripheral arterial disease. Circulation. 2003;108:1481–6.

    Article  CAS  PubMed  Google Scholar 

  15. Ahimastos AA, Walker PJ, Askew C, Leicht A, Pappas E, Blombery P, et al. Effect of ramipril on walking times and quality of life among patients with peripheral artery disease and intermittent claudication: a randomized controlled trial. JAMA J Am Med Assoc. 2013;309(5):453–60.

    Article  CAS  Google Scholar 

  16. Pollak AW, Norton PT, Kramer CM. Multimodality imaging of the lower extremity peripheral arterial disease. Circ: Cardiov Inag. 2012;5:797–807.

    Google Scholar 

  17. Creager MA, Olin JW, Belch JJ, Moneta GL, Henry TD, Rajagopalan S, Annex BH, Hiatt WR. Effect of hypoxia-inducible factor −1 alpha gene therapy on walking performance in patients with intermittent claudication. Circulation. 2011;124:1765–73.

    Article  CAS  PubMed  Google Scholar 

  18. Feinglass J, McCarthy WJ, Slavensky R, Manheim LM, Martin GJ. Effect of lower extremity blood pressure on physical functioning in patients who have intermittent claudication. The Chicago Claudication Outcomes research group. J Vasc Surg. 1996;24:503–11.

    Article  CAS  PubMed  Google Scholar 

  19. Long J, Modrall JG, Parker BJ, Swann A, Welborn MB III, Anthony T. Correlation between ankle-brachial index, symptoms, and health-related quality of life in patients with peripheral vascular disease. J Vasc Surg. 2004;39:723–7.

    Article  PubMed  Google Scholar 

  20. Gardner AW, Montgomery PS, Killewich LA. Natural history of physical function in older men with intermittent claudication. J Vasc Surg. 2004;40:73–8.

    Article  PubMed  Google Scholar 

  21. Narula N, Dannenberg AJ, Olin JW, Bhatt DL, et al. Pathology of peripheral artery disease in patients with critical limb ischemia. J Am Coll Cardiol. 2018;72(18):2152–63.

    Article  CAS  PubMed  Google Scholar 

  22. Gokce N, Keaney JF Jr, Hunter LM, et al. Predictive value of non-invasively-determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J Am Coll Cardiol. 2003;41:1769–75.

    Article  PubMed  Google Scholar 

  23. Gokce N, Keaney JF Jr, Menzoian JO, et al. Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function. Circulation. 2002;105:1567–72.

    Article  PubMed  Google Scholar 

  24. Brevetti G, Silvestro A, Schiano V, Chiariello M. Endothelial dysfunction and cardiovascular risk prediction in peripheral arterial disease: additive value of flow-mediated dilation to ankle – brachial pressure index. Circulation. 2003;108:2093–8.

    Article  PubMed  Google Scholar 

  25. Kiani S, Aasen JG, Holbrook M, Khemka A, Sharmeen F, LeLeiko RM, et al. Peripheral artery disease is associated with severe impairment of vascular function. Vasc Med. 2013;18:72–8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Steg PG, Bhatt DL, Wilson PW, et al. One-year cardiovascular event rates in outpatients with atherothrombosis. JAMA. 2007;297:1197–206.

    Article  CAS  PubMed  Google Scholar 

  27. Stokes J III, Kannel WB, Wolf PA, Cupples LA, D’Agostino RB. The relative importance of selected risk factors for various manifestations of cardiovascular disease among men and women from 35 to 64 years old: 30 years of follow-up in the Framingham Study. Circulation. 1987;75:V65–73.

    PubMed  Google Scholar 

  28. Berger JS, Hochman J, Lobach I, Adelman MA, Riles TS, Rockman CB. Modifiable risk factor burden and the prevalence of peripheral artery disease in different vascular territories. J Vasc Surg. 2013;58:673–81.

    Article  PubMed  Google Scholar 

  29. Sigvant B, Lundin F, Wahlberg E. The risk of disease progression in peripheral arterial disease is higher than expected: a meta-analysis of mortality and disease progression in peripheral arterial disease. Eur J Vasc Endovasc Surg. 2016;51(3):395–403.

    Article  CAS  PubMed  Google Scholar 

  30. Ryan TE, et al. Extensive skeletal muscle cell mitochondriopathy distinguishes critical limb ischemia patients from claudicants. JCI Insight. 2018;3(21):e123235.

    Article  PubMed Central  Google Scholar 

  31. Hyvarinen S. Arteriographic findings of claudication patients. Ann Clin Res. 1984;16:1–45.

    PubMed  Google Scholar 

  32. Lindbom A. Arteriosclerosis and arterial thrombosis in the lower limb: a roentgenological study. Acta Radiol. 1950;80(Suppl):1–80.

    CAS  Google Scholar 

  33. McDermott MM, Liu K, Carroll TJ, et al. Superficial femoral artery plaque and functional performance in peripheral arterial disease: walking and leg circulation study (WALCS III). JACC Cardiovasc Imaging. 2011;4(7):730–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336:1276–82.

    Article  CAS  PubMed  Google Scholar 

  35. van Oostrom O, Velema E, Schoneveld AH, et al. Age-related changes in plaque composition: a study in patients suffering from carotid artery stenosis. Cardiovasc Pathol. 2005;14:126–34.

    Article  PubMed  CAS  Google Scholar 

  36. Soor GS, Vukin I, Leong SW, Oreopoulos G, Butany J. Peripheral vascular disease: who gets it and why? A histomorphological analysis of 261 arterial segments from 58 cases. Pathology. 2008;40:385–91.

    Article  PubMed  Google Scholar 

  37. O’Neill WC, Han KH, Schneider TM, Hennigar RA. Prevalence of non-atheromatous lesions in peripheral artery disease. Atheroscler Thromb Vasc Biol. 2015;35:439–47.

    Article  CAS  Google Scholar 

  38. Robbins JL, Jones WS, Duscha BD, Allen JD, Kraus WE, Regensteiner JG, Hiatt WR, Annex BH. Relationship between leg muscle capillary density and peak hyperemic blood flow with endurance capacity in peripheral artery disease. J Appl Physiol. 2011;111:81–6.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Caradu C, Couffinhal T, Chapouly C, Guimbal S, et al. Restoring endothelial function by Targeting Desert hedgehog downstream of Klf2 improves critical limb ischemia in adults. Circ Res. 2018;123:1053–65.

    Article  CAS  PubMed  Google Scholar 

  40. Miralles JD, Gonzalez AF, Casariego CV, Garcia FA. Onset of peripheral arterial disease: Role of endothlin in endothelial dysfunction. Interactive CardioVascular Thoracisc Surg. 2010;10:760–5.

    Google Scholar 

  41. Lorbeer R, Grotz A, Dörr M, et al. Reference values of vessel diameters, stenosis prevalence, and arterial variations of the lower limb arteries in a male population sample using contrast-enhanced MR angiography. PLoS One. 2018;13(6):e0197559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Khan ZA, Khan MA, Altaf FM, et al. Diameter of the dorsalis pedis artery and its clinical relevance. J Dent Med Sci. 2016;15:129–33.

    Google Scholar 

  43. Gardner AW, Poehlman ET. Exercise rehabilitation programs for the treatment of claudication pain: a meta-analysis. JAMA. 1995;274:975–80.

    Article  CAS  PubMed  Google Scholar 

  44. Leng GC, Fowler B, Ernst E. Exercise for intermittent claudication. Cochrane Database Syst Rev. 2000;2:CD000990.

    Google Scholar 

  45. Lundgren F, Dahllof AG, Lundholm K, Schersten T, Volkmann R. Intermittent claudication—surgical reconstruction or physical training? A prospective randomized trial of treatment efficiency. Ann Surg. 1989;209:346–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Regensteiner JG. Exercise in the treatment of claudication: assessment and treatment of functional impairment. Vasc Med. 1997;2:238–42.

    Article  CAS  PubMed  Google Scholar 

  47. Robeer GG, Brandsma JW, van den Heuvel SP, Smit B, Oostendorp RA, Wittens CH. Exercise therapy for intermittent claudication: a review of the quality of randomised clinical trials and evaluation of predictive factors. Eur J Vasc Endovasc Surg. 1998;15:36–43.

    Article  CAS  PubMed  Google Scholar 

  48. Regensteiner JG, Steiner JF, Hiatt WR. Exercise training improves functional status in patients with peripheral arterial disease. J Vasc Surg. 1996;23:104–15.

    Article  CAS  PubMed  Google Scholar 

  49. Clifford PC, Davies PW, Hayne JA, Baird RN. Intermittent claudication: is a supervised exercise class worth while? Br Med J. 1980;280:1503–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Alpert JS, Larsen OA, Lassen NA. Exercise and intermittent claudication: blood flow in the calf muscle during walking studied by the xenon-133 clearance method. Circulation. 1969;39:353–9.

    Article  CAS  PubMed  Google Scholar 

  51. Gardner AW, Katzel LI, Sorkin JD, et al. Improved functional outcomes following exercise rehabilitation in patients with intermittent claudication. J Gerontol A Biol Sci Med Sci. 2000;55:M570–7.

    Article  CAS  PubMed  Google Scholar 

  52. Duscha BD, et al. Angiogenesis in skeletal muscle precede improvements in peak oxygen uptake in peripheral artery disease patients. Arterioscler Thromb Vasc Biol. 2011;31:2742–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gardner AW, Katzel LI, Sorkin JD, et al. Exercise rehabilitation improves functional outcomes and peripheral circulation in patients with intermittent claudication: a randomized controlled trial. J Am Geriatr Soc. 2001;49:755–62.

    Article  CAS  PubMed  Google Scholar 

  54. Hiatt WR, Regensteiner JG, Hargarten ME, Wolfel EE, Brass EP. Benefit of exercise conditioning for patients with peripheral arterial disease. Circulation. 1990;81:602–9.

    Article  CAS  PubMed  Google Scholar 

  55. Johnson EC, Voyles WF, Atterbom HA, Pathak D, Sutton MF, Greene ER. Effects of exercise training on common femoral artery blood flow in patients with intermittent claudication. Circulation. 1989;80(Suppl III):III- 59–I-72.

    CAS  Google Scholar 

  56. Lundgren F, Dahllof AG, Schersten T, Bylund-Fellenius AC. Muscle enzyme adaptation in patients with peripheral arterial insufficiency: spontaneous adaptation, effect of different treatments and consequences on walking performance. Clin Sci (Lond). 1989;77:485–93.

    Article  CAS  Google Scholar 

  57. Szuba A, Oka RK, Harada R, et al. Limb hemodynamics are not predictive of functional capacity in patients with PAD. Vasc Med. 2006;11:155–63.

    Article  PubMed  Google Scholar 

  58. Lloyd PG, Yang HT, Terjung RL. Arteriogenesis and angiogenesis in rat ischemic hindlimb: role of nitric oxide. Am J Physiol Heart Circ Physiol. 2001;281:H2528–38.

    Article  CAS  PubMed  Google Scholar 

  59. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation. 1998;97:473–83.

    Article  CAS  PubMed  Google Scholar 

  60. Wei K, Skyba DM, Firschke C, Jayaweera AR, Lindner JR, Kaul S. Interactions between microbubbles and ultrasound: in vitro and in vivo observations. J Am Coll Cardiol. 1997;29:1081–8.

    Article  CAS  PubMed  Google Scholar 

  61. Duerschmied D, Maletzki P, Freund G. Analysis of muscle microcirculation in advanced diabetes mellitus by contrast enhanced ultrasound. Diabetes Res Clin Pract. 2008;81:88–92.

    Article  CAS  PubMed  Google Scholar 

  62. Duerschmied D, Olson L, Olschewski M, Rossknecht A, Freund G, Bode C, et al. Contrast ultrasound perfusion imaging of lower extremities in peripheral arterial disease: a novel diagnostic method. Eur Heart J. 2006;27:310–5.

    Article  PubMed  Google Scholar 

  63. Heinonen I, Kemppainen J, Kaskinoro K, Peltonen JE, Borra R, Lindroos MM, et al. Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity. J Appl Physiol. 2010;108(2):378–86.

    Article  CAS  PubMed  Google Scholar 

  64. Kundi R, Prior SJ, Addison O, et al. Contrast-enhanced ultrasound reveals exercise-induced perfusion deficits in Claudicants. J Vasc Endovasc Surg. 2017;2:1.

    Article  Google Scholar 

  65. Askew CD, Green S, Walker PJ, Kerr GK, Green AA, Williams AD, Febbraio MA. Skeletal muscle phenotype is associated with exercise tolerance in patients with peripheral arterial disease. J Vasc Surg. 2005;41:802–7.

    Article  PubMed  Google Scholar 

  66. Regensteiner JG, Wolfel EE, Brass EP, Carry MR, Ringel SP, Hargarten ME, Stamm ER, Hiatt WR. Chronic changes in skeletal muscle histology and function in peripheral arterial disease. Circulation. 1993;87:413–21.

    Article  CAS  PubMed  Google Scholar 

  67. van Royen N, Piek JJ, Buschmann I, Hoefer I, Voskuil M, Schaper W. Stimulation of arteriogenesis; a new concept for the treatment of arterial occlusive disease. Cardiovasc Res. 2001;49:543–53.

    Article  PubMed  Google Scholar 

  68. Annex BH. Therapeutic angiogenesis for critical limb ischemia. Nat Rev Cardiol. 2013;10:387–96.

    Article  CAS  PubMed  Google Scholar 

  69. Ryu JC, Davidson BP, Xie A, Qi Y, Zha D, Belcik JT, et al. Molecular imaging of the paracrine proangiogenic effects of progenitor cell therapy in limb ischemia. Circulation. 2013;127:710–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pascotto M, Leong-Poi H, Kaufmann B, Allrogen A, Charalampidis D, Kerut EK, et al. Assessment of ischemia-induced microvascular remodeling using contrast-enhanced ultrasound vascular anatomic mapping. J Am Soc Echocardiogr. 2007;20:1100–8.

    Article  PubMed  Google Scholar 

  71. Iyer SR, Annex BH. Therapeutic angiogenesis for peripheral artery disease. J Am Coll Cardiol Basic Trans Sci. 2017;2:503–12.

    Google Scholar 

  72. Frumkin LR. The pharmacologic treatment of pulmonary hypertension. Pharmacol Rev. 2012;64:583–620.

    Article  CAS  PubMed  Google Scholar 

  73. Luyt CE, Lepailleur-Enouf D, Gaultier CJ, Valdenaire O, Steg G, Michel JB. Involvement of the endothelin system in experimental critical hind limb ischemia. Mol Med. 2000;6:947–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Grenon SM, Chong K, Alley H, Nosova E, Gasper W, Hiramoto J, Boscardin WJ, Owens CD. Walking disability in patients with peripheral artery disease is associated with arterial endothelial function. J Vasc Surg. 2014;59:1025–34.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Payvandi L, Dyer A, McPherson D, et al. Physical activity during daily life and brachial artery flow-mediated dilation in peripheral arterial disease. Vasc Med. 2009;14:193–201.

    Article  PubMed  PubMed Central  Google Scholar 

  76. McDermott MM, Ades P, Guralnik JM, et al. Treadmill exercise and resistance training in patients with peripheral arterial disease with and without intermittent claudication: a randomized controlled trial. JAMA. 2009;301:165–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hiatt WR, Nawaz D, Brass EP. Carnitine metabolism during exercise in patients with peripheral vascular disease. J Appl Physiol. 1987;62:2383–7.

    Article  CAS  PubMed  Google Scholar 

  78. Hiatt WR, Wolfel EE, Regensteiner JG, Brass EP. Skeletal muscle carnitine metabolism in patients with unilateral peripheral arterial disease. J Appl Physiol. 1992;73:346–53.

    Article  CAS  PubMed  Google Scholar 

  79. Anderson JD, Epstein FH, Meyer CH, Hagspiel KH, Wang H, Berr SS, Harthun N, Weltman A, Dimaria JD, West AM, Kramer CM. Multifactorial determinants of functional capacity in peripheral arterial disease: uncoupling of calf muscle perfusion and metabolism. J Am Coll Cardiol. 2009;54:628–35.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Isbell DC, Meyer CH, Rogers WJ, et al. Reproducibility and reliability of atherosclerotic plaque volume measurements in peripheral arterial disease with cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2007;9(1):71–6.

    Article  PubMed  Google Scholar 

  81. Anand SS, Bosch J, Eikelboom JW, et al. Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: an international, randomised, double-blind, placebo-controlled trial. Lancet. 2018;391:219–29.

    Article  CAS  PubMed  Google Scholar 

  82. Lindner JR, Womack L, Barrett EJ, Weltman J, Price W, Harthun NL, et al. Limb stress-rest perfusion imaging with contrast ultrasound for the assessment of peripheral arterial disease severity. JACC Cardiovasc Imaging. 2008;1:343–50.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Amarteifio E, Weber MA, Wormsbecher S, Demirel S, Krakowski-Roosen H, Jores A, et al. Dynamic contrast-enhanced ultrasound for assessment of skeletal muscle microcirculation in peripheral arterial disease. Investig Radiol. 2011;46:504–8.

    Article  Google Scholar 

  84. Epah J, Pálfi K, Dienst FL, Malacarne PF, Bremer R, Salamon M, Kumar S, Jo H, Schürmann C, Brandes RP. 3D imaging and quantitative analysis of vascular networks: a comparison of ultramicroscopy and micro-computed tomography. Theranostics. 2018;8(8):2117–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Simons M. Chapter 14: assessment of arteriogenesis. Methods Enzymol. 2008;445:331–42.

    Article  CAS  PubMed  Google Scholar 

  86. Wagner S, Helisch A, Ziegelhoeffer T, Bachmann G, Schaper W. Magnetic resonance angiography of collateral vessels in a murine femoral artery ligation model. NMR Biomed. 2004;17:21–7.

    Article  PubMed  Google Scholar 

  87. Helisch A, Wagner S, Khan N, et al. Impact of mouse strain differences in innate hindlimb collateral vasculature. Arterioscler Thromb Vasc Biol. 2006;26:520–6.

    Article  CAS  PubMed  Google Scholar 

  88. Moraes F, Paye J, Mac Gabhann F, Zhuang ZW, Zhang J, Lanahan AA, Simons M. Endothelial cell-dependent regulation of arteriogenesis. Circ Res. 2013;113:1076–86.

    Article  CAS  PubMed  Google Scholar 

  89. Yu J, et al. Super-resolution ultrasound imaging method for microvascular in vivo with a high temporal accuracy. Sci Rep. 2018;8:13918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. McDermott MM, et al. Collateral vessel number, plaque burden, and functional decline in peripheral artery disease. Vasc Med. 2014;19(4):281–8.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wecksell MB, Winchester PA, Bush HL, et al. Cross-sectional pattern of collateral vessels in patients with superficial femoral artery occlusion. Investig Radiol. 2001;36:422–9.

    Article  CAS  Google Scholar 

  92. Baumgartner I, Thoeny HC, Kummer O. Leg ischemia: assessment with MR angiography and spectroscopy. Radiology. 2005;234:833–41.

    Article  PubMed  Google Scholar 

  93. Keeling AN, Carroll TJ, McDermott MM, Liu K, Liao Y, Farrelly CT, et al. Clinical correlates of size and number of collateral vessels in peripheral artery disease. Vasc Med. 2012;17(4):223–30.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Perin, et al. Evaluation of cell therapy of exercise performance and limb perfusion in peripheral artery disease. Circulation. 2017;135:1417–28.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hiatt WR, Armstrong EJ, Larson CJ, Brass EP. Pathogenesis of the limb manifestations and exercise limitations in peripheral artery disease. Circ Res. 2015;116:1527–39.

    Article  CAS  PubMed  Google Scholar 

  96. Capoccia BJ, Robson DL, Levac KD, Maxwell DJ, Hohm SA, Neelamkavil MJ, Bell GI, Xenocostas A, Link DC, Piwnica-Worms D, Nolta JA, Hess DA. Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity. Blood. 2009;113:5340–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ma N, Ladilov Y, Moebius JM, et al. Intramyocardial delivery of human CD133+ cells in a SCID mouse cryoinjury model: bone marrow vs cord blood-derived cells. Cardiovasc Res. 2006;71:158–69.

    Article  CAS  PubMed  Google Scholar 

  98. Sheikh AY, Lin SA, Cao F, et al. Molecular imaging of bone marrow mononuclear cell homing and engraftment in ischemic myocardium. Stem Cells. 2007;25:2677–84.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Pollak AW, Meyer CH, Epstein FH, Jiji RS, Hunter JR, Dimaria JM, Christopher JM, Kramer CM. Arterial spin labeling MR imaging reproducibly measures peak-exercise calf muscle perfusion: a study in patients with peripheral arterial disease and healthy volunteers. JACC Cardiovasc Imaging. 2012;5:1224–30.

    Article  PubMed  Google Scholar 

  100. Wu WC, Mohler E 3rd, Ratcliffe SJ, Wehrli FW, Detre JA, Floyd TF. Skeletal muscle microvascular flow in progressive peripheral artery disease: assessment with continuous arterial spin-labeling perfusion magnetic resonance imaging. J Am Coll Cardiol. 2009;53:2372–7.

    Article  PubMed  Google Scholar 

  101. Ledermann HP, Schulte AC, Heidecker HG, Aschwanden M, Jäger KA, Scheffler K, Steinbrich W, Bilecen D. Blood oxygenation level-dependent magnetic resonance imaging of the skeletal muscle in patients with peripheral arterial occlusive disease. Circulation. 2006;113:2929–35.

    Article  PubMed  Google Scholar 

  102. Jacobi B, Bongartz G, Partovi S, et al. Skeletal muscle BOLD MRI: from underlying physiological concepts to its usefulness in clinical conditions. J Magn Reson Imaging. 2012;35(6):1253–65.

    Article  PubMed  Google Scholar 

  103. Duerschmied D, Zhou Q, Rink E, Harder D, Freund G, Olschewski M, Bode C, Hehrlein C. Simplified contrast ultrasound accurately reveals muscle perfusion deficits and reflects collateralization in PAD. Atherosclerosis. 2009;202:505–12.

    Article  CAS  PubMed  Google Scholar 

  104. Leong-Poi H, Kuliszewski MA, Lekas M, Sibbald M, Teichert-Kuliszewska K, Klibanov AL, et al. Therapeutic arteriogenesis by ultrasound-mediated vegf165 plasmid gene delivery to chronically ischemic skeletal muscle. Circ Res. 2007;101:295–303.

    Article  CAS  PubMed  Google Scholar 

  105. Leong-Poi H, Christiansen J, Heppner P, Lewis CW, Klibanov AL, Kaul S, et al. Assessment of endogenous and therapeutic arteriogenesis by contrast ultrasound molecular imaging of integrin expression. Circulation. 2005;111:3248–54.

    Article  CAS  PubMed  Google Scholar 

  106. Duerschmied D, Maletzki P, Freund G, Olschewski M, Bode C, Hehrlein C. Success of arterial revascularization determined by contrast ultrasound muscle perfusion imaging. J Vasc Surg. 2010;52:1531–6.

    Article  PubMed  Google Scholar 

  107. Brass EP, Hiatt WR, Gardner AW, Hoppel CL. Decreased NADH dehydrogenase and ubiquinol-cytochrome c oxidoreductase in peripheral arterial disease. Am J Physiol Heart Circ Physiol. 2001;280:H603–9.

    Article  CAS  PubMed  Google Scholar 

  108. Hiatt WR, Regensteiner JG, Wolfel EE, Carry MR, Brass EP. Effect of exercise training on skeletal muscle histology and metabolism in peripheral arterial disease. J Appl Physiol. 1996;81:780–8.

    Article  CAS  PubMed  Google Scholar 

  109. Hou XY, Green S, Askew CD, Barker G, Green A, Walker PJ. Skeletal muscle mitochondrial ATP production rate and walking performance in peripheral arterial disease. Clin Physiol Funct Imaging. 2002;22:226–32.

    Article  CAS  PubMed  Google Scholar 

  110. McDermott MM, Ferrucci L, Guralnik JM, Tian L, Green D, Liu K, Tan J, Liao Y, Pearce WH, Schneider JR, Ridker P, Rifai N, Hoff F, Criqui MH. Elevated levels of inflammation, d-dimer, and homocysteine are associated with adverse calf muscle characteristics and reduced calf strength in peripheral arterial disease. J Am Coll Cardiol. 2007;50:897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. McGuigan MR, Bronks R, Newton RU, Sharman MJ, Graham JC, Cody DV, Kraemer WJ. Muscle fiber characteristics in patients with peripheral arterial disease. Med Sci Sports Exerc. 2001;33:2016–21.

    Article  CAS  PubMed  Google Scholar 

  112. Steinacker JM, Opitz-Gress A, Baur S, Lormes W, Bolkart K, Sunder-Plassmann L, Liewald F, Lehmann M, Liu Y. Expression of myosin heavy chain isoforms in skeletal muscle of patients with peripheral arterial occlusive disease. J Vasc Surg. 2000;31:443–9.

    Article  CAS  PubMed  Google Scholar 

  113. Mitchell RG, Duscha BD, Robbins JL, Redfern SI, Chung J, Bensimhon DR, Kraus WE, Hiatt WR, Regensteiner JG, Annex BH. Increased levels of apoptosis in gastrocnemius skeletal muscle in patients with peripheral arterial disease. Vasc Med. 2007;12:285–90.

    Article  PubMed  Google Scholar 

  114. McDermott MM, Ferrucci L, Guralnik J, Tian L, Liu K, Hoff F, Liao Y, Criqui MH. Pathophysiological changes in calf muscle predict mobility loss at 2-year follow-up in men and women with peripheral arterial disease. Circulation. 2009;120:1048–55.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian H. Annex .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaso, E.R., Annex, B.H. (2020). Imaging Needs for Development of Novel Therapeutics in PAD. In: Kramer, C. (eds) Imaging in Peripheral Arterial Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-24596-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24596-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24595-5

  • Online ISBN: 978-3-030-24596-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics