Skip to main content

Radionuclide Imaging

  • Chapter
  • First Online:
  • 701 Accesses

Abstract

Peripheral arterial disease (PAD) is an atherosclerotic disease affecting non-coronary blood vessels that results in stenosis or occlusion of lower extremity arteries and the carotid arteries, leading to downstream reductions in blood flow and perfusion and subsequently increasing the risk for lower extremity ulceration and amputation, as well as ischemic stroke and cerebral infarction. The emergence of radionuclide imaging with the modalities single photon emission computed tomography (SPECT)/CT and positron-emission tomography (PET)/CT has begun to offer opportunities for novel non-invasive insight into the physiological consequences associated with PAD. This chapter discusses the past, present, and future of radionuclide-based imaging approaches that have specific relevance for the evaluation of PAD, with particular focus on targeted physiological imaging of perfusion/blood flow, angiogenesis, and atherosclerosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dua A, Lee CJ. Epidemiology of peripheral arterial disease and critical limb ischemia. Tech Vasc Interv Radiol. 2016;19:91–5.

    Article  PubMed  Google Scholar 

  2. Stacy MR, Sinusas AJ. Novel applications of radionuclide imaging in peripheral vascular disease. Cardiol Clin. 2016;34:167–77.

    Article  PubMed  Google Scholar 

  3. Kuwert T, Schillaci O. SPECT/CT: yesterday, today, tomorrow. Clin Transl Imaging. 2014;2:443–4.

    Article  Google Scholar 

  4. Smith BC, Quimby EH. The use of radioactive sodium as a tracer in the study of peripheral vascular disease. Radiology. 1945;45:335–46.

    Article  CAS  Google Scholar 

  5. Kety S. Measurement of regional circulation by the local clearance of radioactive sodium. Am Heart J. 1949;38:321–8.

    Article  CAS  PubMed  Google Scholar 

  6. Lassen NA. Muscle blood flow in normal man and in patients with intermittent claudication evaluated by simultaneous Xe(133) and Na(24) clearances. J Clin Invest. 1964;43:1805–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lassen OA, Lindberg J, Munck O. Measurement of blood flow through skeletal muscle by intramuscular injection of Xenon-133. Lancet. 1964;1(7335):686–9.

    Article  CAS  PubMed  Google Scholar 

  8. Lassen NA, Lindbjerg IF, Dahn I. Validity of the Xenon-133 method for measurement of muscle blood flow evaluated by simultaneous venous occlusion plethysmography: observations in the calf of normal man and in patients with occlusive vascular disease. Circ Res. 1965;16:287–93.

    Article  CAS  PubMed  Google Scholar 

  9. Lindbjerg IF. Measurement of muscle blood-flow with Xenon-133 after histamine injection as a diagnostic method in peripheral arterial disease. Scand J Clin Lab Invest. 1965b;17:371–80.

    Article  CAS  PubMed  Google Scholar 

  10. Lindbjerg IF. Diagnostic application of the Xenon-133 method in peripheral arterial disease. Scand J Clin Lab Invest. 1965a;17:589–99.

    Article  CAS  PubMed  Google Scholar 

  11. Jones EL, Wagner HN Jr, Zuidema GD. New method for studying peripheral circulation in man. Arch Surg. 1965;91:725–34.

    Article  CAS  PubMed  Google Scholar 

  12. Wagner HN Jr, et al. A method for the study of the peripheral circulation in man. J Nucl Med. 1965;6:150–4.

    PubMed  Google Scholar 

  13. Siegel ME, et al. Effect of reactive hyperemia on the distribution of radioactive microspheres in patients with peripheral vascular disease. Am J Roentgenol Radium Therapy, Nucl Med. 1973;118(4):814–9.

    Article  CAS  Google Scholar 

  14. Siegel ME, Giargiana FA Jr, Rhodes BA, et al. Perfusion of the ischemic ulcers of the extremity: a prognostic indicator of healing. Arch Surg. 1975;110(3):265–8.

    Article  CAS  PubMed  Google Scholar 

  15. Rhodes BA, et al. The distribution of radioactive microspheres after intra-arterial injection in the legs of patients with peripheral vascular disease. Am J Roentgenol Radium Therapy, Nucl Med. 1973;118:820–6.

    Article  CAS  Google Scholar 

  16. Siegel ME, Giargiana FA Jr, White RI Jr, et al. Peripheral vascular perfusion scanning. Correlation with the arteriogram and clinical assessment in the patient with peripheral vascular disease. Am J Roentgenol Radium Therapy, Nucl Med. 1975;125(3):628–63.

    Article  CAS  Google Scholar 

  17. Oshima M, Ijima H, Kohda Y. Peripheral arterial disease diagnosed with high-count-rate radionuclide arteriography. Radiology. 1984;152:161–6.

    Article  CAS  PubMed  Google Scholar 

  18. Siegel ME, et al. A new objective criterion for determining, noninvasively, the healing potential of an ischemic ulcer. J Nucl Med. 1981;22:187–9.

    CAS  PubMed  Google Scholar 

  19. Siegel ME, Stewart CA. Thallium-201 peripheral perfusion scans: feasibility of single-dose, single-day, rest and stress study. AJR Am J Roentgenol. 1981;136(6):1179–83.

    Article  CAS  PubMed  Google Scholar 

  20. Seder JS, et al. Detecting and localizing peripheral arterial disease: assessment of 201Tl scintigraphy. AJR Am J Roentgenol. 1981;137(2):373–80.

    Article  CAS  PubMed  Google Scholar 

  21. Hamanaka D, et al. A quantitative assessment of scintigraphy of the legs using 201Tl. Eur J Nucl Med. 1984;9(1):12–6.

    Article  CAS  PubMed  Google Scholar 

  22. Oshima M, et al. Quantification of leg muscle perfusion using thallium-201 single photon emission computed tomography. J Nucl Med. 1989;30(4):458–65.

    CAS  PubMed  Google Scholar 

  23. Duet M, et al. Whole-body (201)Tl scintigraphy can detect exercise lower limb perfusion abnormalities in asymptomatic diabetic patients with normal Doppler pressure indices. Nucl Med Commun. 2001;22(9):949–54.

    Article  CAS  PubMed  Google Scholar 

  24. Cosson E, et al. Lower-limb vascularization in diabetic patients: assessment by thallium-201 scanning coupled with exercise myocardial scintigraphy. Diabetes Care. 2001;24:870–4.

    Article  CAS  PubMed  Google Scholar 

  25. Lin C-C, et al. Usefulness of thallium-201 muscle perfusion scan to investigate perfusion reserve in the lower limbs of type 2 diabetic patients. J Diabetes Complicat. 2004;18(4):233–6.

    Article  Google Scholar 

  26. Stacy MR, et al. Multimodality imaging approach for serial assessment of regional changes in lower extremity arteriogenesis and tissue perfusion in a porcine model of peripheral arterial disease. Circ Cardiovasc Imaging. 2014;7(1):92–9.

    Article  PubMed  Google Scholar 

  27. Sayman HB, Urgancioglu I. Muscle perfusion with technetium-MIBI in lower extremity peripheral arterial diseases. J Nucl Med. 1991;32(9):1700–3.

    CAS  PubMed  Google Scholar 

  28. Miles KA, et al. Leg muscle scintigraphy with (99)Tc-MIBI in the assessment of peripheral vascular (arterial) disease. Nucl Med Commun. 1992;13:593–603.

    Article  CAS  PubMed  Google Scholar 

  29. Celen YZ, et al. Investigation of perfusion reserve using 99Tc(m)-MIBI in the lower limbs of diabetic patients. Nucl Med Commun. 2000;21(9):817–22.

    Article  CAS  PubMed  Google Scholar 

  30. Kuśmierek J, et al. Radionuclide assessment of lower limb perfusion using (99m)Tc-MIBI in early stages of atherosclerosis. Nucl Med Rev. 2006;9(1):18–23.

    Google Scholar 

  31. Miyamoto M, et al. Therapeutic angiogenesis by autologous bone marrow cell implantation for refractory chronic peripheral arterial disease using assessment of neovascularization by 99mTc-tetrofosmin (TF) perfusion scintigraphy. Cell Transplant. 2004;13(4):429–37.

    Article  PubMed  Google Scholar 

  32. Takagi G, et al. Imaging angiogenesis using 99mTc-MAA scintigraphy in patients with peripheral artery disease. J Nucl Med. 2016;57:192–7.

    Article  CAS  PubMed  Google Scholar 

  33. Takagi G, et al. Controlled-release basic fibroblast growth factor for peripheral artery disease: comparison with autologous bone marrow-derived stem cell transfer. Tissue Eng Part A. 2011;17:2787–94.

    Article  CAS  PubMed  Google Scholar 

  34. Stacy MR, Zhou W, Sinusas AJ. Radiotracer imaging of peripheral vascular disease. J Nucl Med. 2013;54(12):2104–10.

    CAS  PubMed  Google Scholar 

  35. Buckley JL, et al. Radiotracer imaging allows for assessment of serial changes in angiosome foot perfusion following revascularization and predicts limb salvage outcomes in patients with critical limb ischemia. J Am Coll Cardiol. 2017;69:A1393.

    Article  Google Scholar 

  36. Depairon M, et al. Effect of exercise on the leg distribution of C15O2 and 15O2 in normals and in patients with peripheral ischemia: a study using positron tomography. Int Angiol. 1988;7:254–7.

    CAS  PubMed  Google Scholar 

  37. Depairon M, et al. Assessment of flow and oxygen delivery to the lower extremity in arterial insufficiency: a PET-scan study comparison with other methods. Angiology. 1991;42(10):788–95.

    Article  CAS  PubMed  Google Scholar 

  38. Burchert W, et al. Oxygen-15-water PET assessment of muscular blood flow in peripheral vascular disease. J Nucl Med. 1996;37:93–8.

    Google Scholar 

  39. Schmidt MA, et al. Calf flow reserve with H(2)(15)O PET as a quantifiable index of lower extremity flow. J Nucl Med. 2003;44(6):915–9.

    PubMed  Google Scholar 

  40. Scremin OU, et al. Preamputation evaluation of lower-limb skeletal muscle perfusion with (15)O H2O positron emission tomography. Am J Phys Med Rehabil. 2010;89(6):473–86.

    Article  PubMed  Google Scholar 

  41. Fischman AJ, et al. Regional measurement of canine skeletal muscle blood flow by positron emission tomography with H2(15)O. J Appl Physiol. 2002;92(4):1709–16.

    Article  PubMed  Google Scholar 

  42. Peñuelas I, et al. (13)N-ammonia PET as a measurement of hindlimb perfusion in a mouse model of peripheral artery occlusive disease. J Nucl Med. 2007;48(7):1216–23.

    Article  PubMed  CAS  Google Scholar 

  43. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Isner JM, Pieczek A. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet. 1996;348(9024):370–4.

    Article  CAS  PubMed  Google Scholar 

  45. Baumgartner I, et al. Clinical investigation and reports constitutive expression of phVEGF 165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation. 1998;97(12):1114–23.

    Article  CAS  PubMed  Google Scholar 

  46. Rajagopalan S, et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent cla. Circulation. 2003;108(16):1933–8.

    Article  CAS  PubMed  Google Scholar 

  47. Nikol S, et al. Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Therapy. 2008;16(5):972–8.

    Article  CAS  Google Scholar 

  48. Using T, et al. Clinical and population studies long-term follow-up evaluation of results from clinical peripheral arterial disease. Arterioscler Thromb Vasc Biol. 2012;32(10):2503–9.

    Article  CAS  Google Scholar 

  49. Rajagopalan S, et al. Use of a constitutively active hypoxia-inducible factor-1 alpha transgene as a therapeutic strategy in no-option critical limb ischemia patients phase I dose-escalation experience. Circulation. 2007;115(10):1234–43.

    Article  CAS  PubMed  Google Scholar 

  50. Tateishi-yuyama E, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360:427–35.

    Article  PubMed  Google Scholar 

  51. Walter DH, et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia. Circ Cardiovasc Interv. 2011;4(1):26–37.

    Article  PubMed  Google Scholar 

  52. Kawamoto A, et al. Intramuscular transplantation of G-CSF-mobilized CD34+ cells in patients with critical limb ischemia: a phase I/IIa, multicenter, single-blinded, dose-escalation clinical trial. Stem Cells. 2009;27(11):2857–64.

    Article  CAS  PubMed  Google Scholar 

  53. Lasala GP, et al. Combination stem cell therapy for the treatment of severe limb ischemia : safety and efficacy analysis. Angiology. 2010;61(6):551–6.

    Article  PubMed  Google Scholar 

  54. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18(1):4–25.

    Article  CAS  PubMed  Google Scholar 

  55. Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci. 2001;114(5):853–65.

    CAS  PubMed  Google Scholar 

  56. Lu E, et al. Targeted in vivo labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. Circulation. 2003;108(1):97–103.

    Article  CAS  PubMed  Google Scholar 

  57. Willmann JK, et al. Monitoring of the biological response to murine hindlimb ischemia with 64Cu-labeled vascular endothelial growth factor-121 positron emission tomography. Circulation. 2008;117(7):915–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Clyman R, Mauray F, Kramer R. Beta 1 and beta 3 integrins have different roles in the adhesion and migration of vascular smooth muscle cells on extracellular matrix. Exp Cell Res. 1992;200(2):272–84.

    Article  CAS  PubMed  Google Scholar 

  59. Brooks P, et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 1994;79(7):1157–64.

    Article  CAS  PubMed  Google Scholar 

  60. Shattil SJ. Function and regulation of the beta 3 integrins in hemostasis and vascular biology. Thromb Haemost. 1995;74(1):149–55.

    CAS  PubMed  Google Scholar 

  61. Dijkgraaf I, Boerman O. Radionuclide imaging of tumor angiogenesis. Cancer Biother Radiopharm. 2009;24(6):637–47.

    Article  CAS  PubMed  Google Scholar 

  62. Stacy MR, Maxfield MW, Sinusas AJ. Targeted molecular imaging of angiogenesis in PET and SPECT: a review. Yale J Biol Med. 2012;85(1):75–86.

    PubMed  PubMed Central  Google Scholar 

  63. Hua J, et al. Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia. Circulation. 2005;111(24):3255–60.

    Article  CAS  PubMed  Google Scholar 

  64. Dobrucki LW, et al. Serial noninvasive targeted imaging of peripheral angiogenesis: validation and application of a semiautomated quantitative approach. J Nucl Med. 2009;50(8):1356–63.

    Article  PubMed  Google Scholar 

  65. Tsioupinaki K, et al. Molecular imaging for the in vivo monitoring of angiogenesis in a hindlimb ischemia animal model. Front Biomed Technol. 2014;1(1):35–41.

    Google Scholar 

  66. Tekabe Y, et al. Treatment effect with anti-RAGE F(ab’)2 antibody improves hind limb angiogenesis and blood flow in type 1 diabetic mice with left femoral artery ligation. Vasc Med. 2015;20(3):212–8.

    Article  CAS  PubMed  Google Scholar 

  67. Goggi JL, et al. Simvastatin augments revascularization and reperfusion in a murine model of hind limb ischemia – multimodal imaging assessment. Nucl Med Biol. 2017;46:25–31.

    Article  CAS  PubMed  Google Scholar 

  68. Kim MH, et al. A novel Tc-99m and fluorescence labeled peptide as a multimodal imaging agent for targeting angiogenesis in a murine hindlimb ischemia model. Appl Radiat Isot. 2017;121:22–7.

    Article  PubMed  CAS  Google Scholar 

  69. Lee KH, et al. Radiolabeled RGD uptake and alphav integrin expression is enhanced in ischemic murine hindlimbs. J Nucl Med. 2005;46(3):472–8.

    CAS  PubMed  Google Scholar 

  70. Jeong JM, et al. Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-Isothiocyanatobenzyl-1,4,7-Triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice. J Nucl Med. 2008;49(5):830–6.

    Article  CAS  PubMed  Google Scholar 

  71. Almutairi A, et al. Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci U S A. 2009;106(3):685–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hedhli J, et al. Multimodal assessment of mesenchymal stem cell therapy for diabetic vascular complications. Theranostics. 2017;7(16):3876–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu Y, et al. Targeting angiogenesis using a C-type atrial natriuretic factor-conjugated nanoprobe and PET. J Nucl Med. 2011;52(12):1956–63.

    Article  CAS  PubMed  Google Scholar 

  74. Dallas NA, et al. Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res. 2008;14(7):1931–7.

    Article  CAS  PubMed  Google Scholar 

  75. Orbay H, et al. Pravastatin stimulates angiogenesis in a murine hindlimb ischemia model: a positron emission tomography imaging study with Cu-NOTA-TRC105. Am J Transl Res. 2014;6(1):54–63.

    CAS  Google Scholar 

  76. Little WC, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation. 1988;78(5 Pt 1):1157–66.

    Article  CAS  PubMed  Google Scholar 

  77. Ambrose JA, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol. 1988;12(1):56–62.

    Article  CAS  PubMed  Google Scholar 

  78. Virmani R, et al. Pathology of the unstable plaque. Prog Cardiovasc Dis. 2002;44(5):349–56.

    Article  PubMed  Google Scholar 

  79. Rosenfeld ME. Leukocyte recruitment into developing atherosclerotic lesions: the complex interaction between multiple molecules keeps getting more complex. Arterioscler Thromb Vasc Biol. 2002;22(3):361–3.

    Article  CAS  PubMed  Google Scholar 

  80. Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–74.

    Article  CAS  PubMed  Google Scholar 

  81. van der Wal AC, et al. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation. 1994;89(1):36–44.

    Article  PubMed  Google Scholar 

  82. Leppanen O, et al. ATP depletion in macrophages in the core of advanced rabbit atherosclerotic plaques in vivo. Atherosclerosis. 2006;188(2):323–30.

    Article  PubMed  CAS  Google Scholar 

  83. Lederman RJ, et al. Detection of atherosclerosis using a novel positron-sensitive probe and 18-fluorodeoxyglucose (FDG). Nucl Med Commun. 2001;22(7):747–53.

    Article  CAS  PubMed  Google Scholar 

  84. Yun M, et al. F-18 FDG uptake in the large arteries. A new observation. Clin Nucl Med. 2001;26(4):314–9.

    Article  CAS  PubMed  Google Scholar 

  85. Bural GG, et al. FDG-PET is an effective imaging modality to detect and quantify age-related atherosclerosis in large arteries. Eur J Nucl Med Mol Imaging. 2008;35(3):562–9.

    Article  PubMed  Google Scholar 

  86. Pasha AK, et al. Effects of age and cardiovascular risk factors on (18)F-FDG PET/CT quantification of atherosclerosis in the aorta and peripheral arteries. Hellenic J Nucl Med. 2015;18(1):5–10.

    Google Scholar 

  87. Bural GG, et al. Atherosclerotic 18F-FDG and MDP uptake in femoral arteries, changes with age. Nucl Med Commun. 2016;37(8):833–6.

    Article  CAS  PubMed  Google Scholar 

  88. Yun M, et al. 18F FDG uptake in the large arteries: a correlation study with the atherogenic risk factors. Semin Nucl Med. 2002;32(1):70–6.

    Article  PubMed  Google Scholar 

  89. Rominger A, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med. 2009;50:1611–20.

    Article  PubMed  Google Scholar 

  90. De Boer SA, et al. Arterial stiffness is positively associated with 18F-fluorodeoxyglucose positron emission tomography-assessed subclinical vascular inflammation in people with early type 2 diabetes. Diabetes Care. 2016;39(8):1440–7.

    Article  PubMed  CAS  Google Scholar 

  91. Hetterich H, et al. Natural history of atherosclerotic disease progression as assessed by 18F-FDG PET/CT. Int J Cardiovasc Imaging. 2016;32(1):49–59.

    Article  PubMed  Google Scholar 

  92. Jezovnik MK, et al. Identification of inflamed atherosclerotic lesions in vivo using PET-CT. Inflammation. 2014;37(2):426–34.

    Article  CAS  PubMed  Google Scholar 

  93. Myers KS, et al. Correlation between arterial FDG uptake and biomarkers in peripheral artery disease. JACC Cardiovasc Imaging. 2012;5(1):38–45.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Rudd JHF, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med. 2008;49(6):871–8.

    Article  PubMed  Google Scholar 

  95. Lee SJ, et al. Reversal of vascular 18F-FDG uptake with plasma high-density lipoprotein elevation by atherogenic risk reduction. J Nucl Med. 2008;49:1277–82.

    Article  CAS  PubMed  Google Scholar 

  96. Ishii H, et al. Comparison of atorvastatin 5 and 20 mg/d for reducing F-18 fluorodeoxyglucose uptake in atherosclerotic plaques on positron emission tomography/computed tomography: a randomized, investigator-blinded, open-label, 6-month study in Japanese adults scheduled. Clin Ther. 2010;32(14):2337–47.

    Article  CAS  PubMed  Google Scholar 

  97. Derlin T, et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med. 2010;51(6):862–5.

    Article  PubMed  Google Scholar 

  98. Ferreira MJ, et al. Assessment of atherosclerotic plaque calcification using F18-NaF PET-CT. J Nucl Cardiol. 2017;25(5):1733–41. Epub ahead of print.

    Article  PubMed  Google Scholar 

  99. Derlin T, Wisotzki C, et al. In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors. J Nucl Med. 2011;52:362–8.

    Article  PubMed  Google Scholar 

  100. Janssen T, et al. Association of linear (18)F-sodium fluoride accumulation in femoral arteries as a measure of diffuse calcification with cardiovascular risk factors: a PET/CT study. J Nucl Cardiol. 2013;20:569–77.

    Article  PubMed  Google Scholar 

  101. Derlin T, Toth Z, et al. Correlation of inflammation assessed by (18)F-FDG PET, active mineral deposition assessed by (18)F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study. J Nucl Med. 2011;52:1020–7.

    Article  PubMed  Google Scholar 

  102. Yamasaki K, et al. In vitro and metabolism of [14C]acetate in rabbit atherosclerotic arteries: biological basis for atherosclerosis imaging with [11C]acetate. Nucl Med Biol. 2018;56:21–5.

    Article  CAS  PubMed  Google Scholar 

  103. Derlin T, et al. Feasibility of 11C-acetate PET/CT for imaging of fatty acid synthesis in the atherosclerotic vessel wall. J Nucl Med. 2011;52(12):1848–54.

    Article  CAS  PubMed  Google Scholar 

  104. Liu Y, et al. Molecular imaging of atherosclerotic plaque with 64Cu-labeled natriuretic peptide and PET. J Nucl Med. 2010;51(1):85–91.

    Article  CAS  PubMed  Google Scholar 

  105. Nie X, et al. PET/MRI of hypoxic atherosclerosis using 64Cu-ATSM in a rabbit model. J Nucl Med. 2016;57(12):2006–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bartholoma MD, et al. (18)F-labeled rhodamines as potential myocardial perfusion agents: comparison of pharmacokinetic properties of several rhodamines. Nucl Med Biol. 2015;42:796–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bartholoma MD, et al. Biological characterization of F-18-labeled rhodamine B, a potential positron emission tomography perfusion tracer. Nucl Med Biol. 2013;40:1043–8.

    Article  CAS  PubMed  Google Scholar 

  108. AlJammaz I, et al. Novel synthesis and initial preclinical evaluation of (18)F-[FDG] labeled rhodamine: a potential PET myocardial perfusion imaging agent. Nucl Med Biol. 2015;42:804–8.

    Article  CAS  PubMed  Google Scholar 

  109. Berman DS, et al. Phase II safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease: flurpiridaz F 18 positron emission tomography. J Am Coll Cardiol. 2013;61:469–77.

    Article  CAS  PubMed  Google Scholar 

  110. Packard RR, et al. Absolute quantification of myocardial blood flow in human subjects with or without myocardial ischemia using dynamic flurpiridaz F 18 PET. J Nucl Med. 2014;55:1438–44.

    Article  PubMed  Google Scholar 

  111. Wells RG, et al. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J Nucl Med. 2014;55:1685–91.

    Article  CAS  PubMed  Google Scholar 

  112. Pande RL, et al. Impaired skeletal muscle glucose uptake by [18F]Fluorodeoxyglucose-positron emission tomography in patients with peripheral artery disease and intermitten claudication. Arterioscler Thromb Vasc Biol. 2011;31:190–6.

    Article  CAS  PubMed  Google Scholar 

  113. Nguyen PK, Riegler J, Wu JC. Stem cell imaging: from bench to bedside. Cell Stem Cell. 2014;14:431–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kang WJ, et al. Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. J Nucl Med. 2006;47:1295–301.

    PubMed  Google Scholar 

  115. Schachinger V, et al. Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium. Circulation. 2008;118(14):1425–32.

    Article  PubMed  Google Scholar 

  116. Hofmann M, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005;111(17):2198–202.

    Article  PubMed  Google Scholar 

  117. Karpov RS, et al. Autologous mononuclear bone marrow cells during reparative regeneration after acute myocardial infarction. Bull Exp Biol Med. 2005;140(5):640–3.

    Article  CAS  PubMed  Google Scholar 

  118. Vrtovec B, et al. Comparison of transendocardial and intracoronary CD34+ cell transplantation in patients with nonischemic dilated cardiomyopathy. Circulation. 2013;128(Suppl 1):S42–9.

    Article  CAS  PubMed  Google Scholar 

  119. Templin C, et al. Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iod. Circulation. 2012;126(4):430–9.

    Article  CAS  PubMed  Google Scholar 

  120. Dohan O, et al. The sodium/iodide symporter (NIS): characterization, regulation, and medical significance. Endocr Rev. 2003;24(1):48–77.

    Article  CAS  PubMed  Google Scholar 

  121. Fiechter M, et al. Cardiac quadruple-fusion imaging: a brief report on a novel integrated multimodality approach for in vivo visualization of transplanted stem cells. Int J Cardiol. 2012;161(1):62–3.

    Article  PubMed  Google Scholar 

  122. Figueroa AL, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging. 2013;6:1250–9.

    Article  PubMed  Google Scholar 

  123. Robson PM, et al. MR/PET imaging of the cardiovascular system. JACC Cardiovasc Imaging. 2017;10:1165–79.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Orbay H, et al. Positron emission tomography imaging of angiogenesis in a murine hindlimb ischemia model with (64)Cu-labeled TRC105. Mol Pharm. 2013;10(7):2749–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchel R. Stacy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stacy, M.R., Chou, TH., Sinusas, A.J. (2020). Radionuclide Imaging. In: Kramer, C. (eds) Imaging in Peripheral Arterial Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-24596-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24596-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24595-5

  • Online ISBN: 978-3-030-24596-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics