Skip to main content

Titanium and Titanium Alloys

  • Chapter
  • First Online:

Part of the book series: Topics in Mining, Metallurgy and Materials Engineering ((TMMME))

Abstract

Titanium and titanium alloys are fundamental constituents of several parts of aircrafts, owing to their unique combination of properties: high specific strength, low coefficient of thermal expansion, moderate density, long fatigue life, creep strength, fracture toughness, and excellent corrosion resistance induced by the spontaneous formation of a TiO2 surface passivating layer. An indirect proof of the great interest for titanium alloys as fundamental aerospace materials can be inferred from their wide range of applications, from structural components to engine parts. This interest is bound to continue in the future, sustained by the ongoing research focused on the development of new alloys, like Ti-aluminides, exhibiting improved properties, compliant with the design requirements emerging even from novel priorities, like fuel saving and reduction in air pollution. This chapter is entirely dedicated to titanium and its alloys, with particular focus on metallurgical issues and production processes. Furthermore, like for the other light alloys seen in Chap. 3, the main applications in the aerospace field are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ASM International (1991) ASM Handbook Vol. 2 – Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. ASM International

    Google Scholar 

  • ASM International (1992) ASM Handbook Vol. 17 – Nondestructive Evaluation and Quality Control

    Google Scholar 

  • ASM International (1992) ASM Handbook Vol. 3 – Alloy phase diagrams. ASM International

    Google Scholar 

  • Bania P J (1994) Beta Titanium Alloys and Their Role in the Titanium Industry. Journal of Materials 46 (7): 16–19

    CAS  Google Scholar 

  • Bewlay BP et al (2016) TiAl Alloys in Commercial Aircraft Engines. Materials at High Temperatures 33 (4–5): 549–559

    Article  CAS  Google Scholar 

  • Boyer R (1994) Aerospace Applications of Beta Titanium Alloys. Journal of Materials 46(7): 20–23

    Google Scholar 

  • Boyer R (2010) Application of Titanium and Its Alloys. Journal of Materials 62(5): 21–24

    CAS  Google Scholar 

  • Boyer R, Collings E W, Welsch G (1994) Materials Properties Handbook: Titanium Alloys. ASM International

    Google Scholar 

  • Cain K J (2016) Industrial Titanium Demand Forecast 2016. In: Titanium USA 2016, the 32nd annual conference and exhibition produced by the International Titanium Association (ITA), J. W. Marriot Desert Ridge Resort, Scottsdale, 25–28 September 2016

    Google Scholar 

  • Chen G et al (2016) Polysynthetic twinned TiAl Single Crystals for high-temperature Applications. Nature Materials 15: 876–881

    Article  CAS  Google Scholar 

  • Chen W et al (2014) Development of Ti2AlNb Alloys: Opportunities and Challenges. Advanced Materials & Processes 172(5): 23–27

    CAS  Google Scholar 

  • Cotton J et al (2015) State of the Art in Beta Titanium Alloys for Airframe Applications. Journal of Materials 67 (6):1281–1303

    CAS  Google Scholar 

  • Dargusch M S, Keay S M (2009) Meltless Ti-Al New Light Metals Industry. In: Dargusch M S, Keay S M (eds) Light Metals Technology, Trans Tech Publications Ltd, p 135–138

    Google Scholar 

  • Das S K, Davis L A (1988) High Performance Aerospace Alloys via Rapid Solidification Processing. Materials Science and Engineering 98: 1–12

    Article  CAS  Google Scholar 

  • Dimiduk D M et al (1992) Development of Intermetallic materials for Aerospace Systems. Materials Science and Technology 8(4): 367–375

    Article  CAS  Google Scholar 

  • Ding X F et al. (2011) Microstructure evolution of directionally solidified Ti-45Al-8.5Nb-(W, B, Y) alloys. Journal of Alloys and Compounds 509(9): 4041–4046

    Article  CAS  Google Scholar 

  • Donachie M J (2000) Titanium – A Technical Guide, 2nd edn. ASM International

    Google Scholar 

  • Eylon D et al (1994) Issues in the Development of Beta Titanium Alloys. Journal of Materials 46 (7): 14–15

    CAS  Google Scholar 

  • Froes F H (2015) Titanium: Physical Metallurgy, Processing and Applications. ASM International, Materials Park, Ohio

    Google Scholar 

  • Froes F H, Imam A (2018) Titanium: A Historic and Current Perspective-Part I. Advanced Materials and Processes 176: 19–25

    Google Scholar 

  • Hashimoto K et al. (1998) Alloy design of gamma titanium aluminides based on phase diagrams. Intermetallics 6(7–8): 667–672

    Article  CAS  Google Scholar 

  • Hellier C (2001) Handbook of Nondestructive Evaluation. McGraw-Hill

    Google Scholar 

  • Kutz M (2002) Handbook of Materials Selection. John Wiley and Sons

    Google Scholar 

  • Lapin J (2006) Creep behavior of a cast TiAl-based alloy for industrial applications. Intermetallics 14(2): 115–122

    Article  CAS  Google Scholar 

  • Lapin J, Ondrúš L, Nazmy M (2002) Directional Solidification of Intermetallic Ti-46Al-2W-0.5Si Alloy in Alumina Moulds. Intermetallics 10 (10): 1019–1031

    Article  CAS  Google Scholar 

  • Leach W (2016) Titanium Demand and Trends in the Aero Engine Market. In: Titanium USA 2016, the 32nd annual conference and exhibition produced by the International Titanium Association (ITA), J. W. Marriot Desert Ridge Resort, Scottsdale, 25–28 September 2016

    Google Scholar 

  • Leyens C, Peters M (2003) Titanium and Titanium Alloys – Fundamentals and Applications. Wiley VHC Verlag, Weinheim

    Book  Google Scholar 

  • Linger D (2009) Titanium Utilization & Vision for The Next Decade: An Aircraft Engine OEM Perspective. In: Titanium 2009, the 25th annual conference and exhibition produced by the International Titanium Association (ITA), Hilton Waikoloa Village, Hawaii, 13–16 September 2009

    Google Scholar 

  • Liu B G et al. (2017) Structural stability and the alloying effect of TiB polymorphs in TiAl alloys. Intermatallics 90: 97–102

    Article  CAS  Google Scholar 

  • Lütjering G, Williams J C (2007) Titanium, 2nd edn. Springer Berlin Heidelberg, Berlin

    Google Scholar 

  • Massalski T B et al (1986) Binary Alloys Phase Diagrams Vol. 2. ASM International

    Google Scholar 

  • McCafferty E (2010) Introduction to Corrosion Science. Springer Verlag

    Google Scholar 

  • Meetham G W (1981) The Development of Gas Turbine Materials. Applied Science Publishers Ltd, London

    Book  Google Scholar 

  • Mix P E (2005) Introduction to Nondestructive Testing: A Training Guide. John Wiley & Sons

    Google Scholar 

  • Moiseyev V N (2006) Titanium Alloys-Russian Aircraft and Aerospace Applications. Taylor & Francis

    Google Scholar 

  • Nieh T G et al. (1994) Superplasticity in Metals and Ceramics. Cambridge University Press

    Google Scholar 

  • Partridge A, Shelton E F J (2001) Processing and Mechanical Property Studies of Orthorhombic Titanium-Aluminide-based Alloys. Air & Space Europe 3 (3–4): 170–173

    Article  Google Scholar 

  • Pérez-Prado M T, Kassner ME (2009) Superplasticity. In: Kassner M E (ed) Fundamentals of Creep in Metals and Alloys, 2nd edn. Elsevier, p 137–149

    Google Scholar 

  • Peters J M, Blank-Berwersdorff M (1992) Titanium Aluminide Foil. Materials and Design 13 (2): 83–92

    Article  Google Scholar 

  • Polmear I J (2006) Light Alloys – From Traditional Alloys to Nanocrystals, 4th edn. Butterworth-Heinemann

    Google Scholar 

  • Prasad E N, Wanhill R (2017) Aerospace Materials and Material Technologies Volume 1: Aerospace Materials. Springer

    Google Scholar 

  • Proske G et al. (1992) The Microstructure and Mechanical Properties of the Intermetallic Compund Super Alpha 2. Materials Science and Engineering A 152: 310–316

    Article  Google Scholar 

  • Sastry S M L et al (1983) Rapid Solidification Processing of Titanium Alloys. JOM 35 (9): 21–28

    Article  Google Scholar 

  • Sears J W (1990) Current Processes for the Cold-Wall Melting of Titanium. Journal of Minerals, Metals and Materials Society 42 (3):17–21

    Article  CAS  Google Scholar 

  • Suryanarayana C et al. (1991) Rapid Solidification Processing of Titanium Alloys. International Materials Review 36 (1): 85–123

    Article  CAS  Google Scholar 

  • Suryanarayana C, Froes F H (1990) The Current Status of Titanium Rapid Solidification. Journal of Materials 42 (3): 22–25

    CAS  Google Scholar 

  • Wang L et al. (2017) Influence of Alloy Composition and Thermal History on Carbide Precipitation in γ-based TiAl Alloys. Intermetallics 89:32–39

    Article  CAS  Google Scholar 

  • Zhao Z B et al. (2017) Effect of heat treatment on the crystallographic orientation evolution of a near-α titanium alloy Ti60. Acta Materialia 131: 305–314

    Article  CAS  Google Scholar 

Further Reading

  • Boyer R R (1996) An overview on the use of titanium in the aerospace industry. Materials Science and Engineering: A 213 (1–2):103–114

    Article  Google Scholar 

  • Gillo G (2011) Superplastic Forming of Advanced Metallic Materials – Methods and Applications. Woodhead Publishing Ltd

    Google Scholar 

  • Joshi V A (2006) Titanium Alloys – An Atlas of Structures and Fracture Features. Taylor & Francis

    Google Scholar 

  • Moore H D (1981) Materials and Processes for NDT Technology. The American Society for Nondestructive Testing

    Google Scholar 

  • Seong S et al. (2009) Titanium – Industrial Base, Price Trends and Technology Initiatives. RAND Corp., CA (USA)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gialanella, S., Malandruccolo, A. (2020). Titanium and Titanium Alloys. In: Aerospace Alloys . Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-24440-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24440-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24439-2

  • Online ISBN: 978-3-030-24440-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics