Skip to main content

MR Elastography and Functional MRI of the Liver

  • Chapter
  • First Online:

Abstract

Hepatobiliary Magnetic resonance imaging (MRI) has progressed in the last decade, actually combining morphological and functional data analysis concerning liver parenchyma and focal lesion(s). A correct liver MRI protocol combining morphological and functional sequences allow to detect and characterize liver diffuse pathologies (such as steatosis, hemochromatosis, liver fibrosis, sinusoidal obstructive syndrome, etc.) and/or different type of nodules developed into a normal liver parenchyma or altered liver tissue (e.g. chronic hepatitis, steatofibrosis, liver cirrhosis). Magnetic Resonance Elastography (MRE) is a non-invasive and accurate alternative imaging technique to invasive liver biopsy used in our days to diagnose, quantify and follow-up liver fibrosis. Diffusion weighted imaging (DWI) plays a major role in liver lesions detection, in particular in the detection of metastases in patients with known cancer but also provides information concerning the detection and characterization of liver damage (e.g. liver fibrosis) and for measuring the therapeutic response. MRI evaluation of the liver with specific Gadolinium based contrast agents offer a better detection and characterization of liver lesions having additional advantages to non-specific extracellular MRI contrast agents such as a higher and “specific” enhancement of liver parenchyma correlated with hepatocytes function, and an optimal evaluation of the biliary tree.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Babu AS, Wells ML, Teytelboym OM, et al. Elastography in chronic liver disease: modalities, techniques, limitations, and future directions. Radiographics. 2016;36:1987–2006.

    Article  Google Scholar 

  2. Tang A, Cloutier G, Szeverenyi NM, Sirlin CB. Ultrasound elastography and MR elastography for assessing liver fibrosis: Part 1, Principles and techniques. Am J Roentgenol. 2015;205(1):22–32.

    Article  Google Scholar 

  3. Tang A, Cloutier G, Szeverenyi NM, Sirlin CB. Ultrasound elastography and MR elastography for assessing liver fibrosis: Part 2, Diagnostic performance, confounders, and future directions. Am J Roentgenol. 2015;205(2):33–40.

    Article  Google Scholar 

  4. Venkatesh SK, Yin M, Ehman RL. Magnetic resonance elastography of liver: technique, analysis and clinical applications. J Magn Reson Imaging. 2013;37(3):544–55.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Venkatesh SK, Ehman RL. Magnetic resonance elastography of abdomen. Abdom Imaging. 2015;40:745–59.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Venkatesh SK, Yin M, Takahashi N, Glockner JF, Talwalkar JA, Ehman RL. Non-invasive detection of liver fibrosis: MR imaging features vs. MR elastography. Abdom Imaging. 2015;40(4):766–75.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Serai SD, Yin M, Wang H. Cross-vendor validation of liver magnetic resonance elastography. Abdom Imaging. 2015;40:789–94.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Faria SC, Ganesan K, Mwangi I, et al. MR imaging of liver fibrosis: current state of the art. Radiographics. 2009;29(6):1615–35.

    Article  PubMed  Google Scholar 

  9. Kennedy P, Wagner M, Castéra L, Hong C-W, et al. Quantitative elastography methods in liver disease: current evidence and future directions. Radiology. 2018;286(3):738–63.

    Article  PubMed  Google Scholar 

  10. Afdhal N, Bedossa P, Friedrich-Rust M, Han K-H, Pinzani M. EASL-ALEH clinical practice guidelines: non-invasive tests for evaluation of liver disease severity and prognosis. J Hepatol. 2015;63(1):237–64.

    Article  Google Scholar 

  11. Yin M, Glaser KJ, Talwalkar JA, Chen J, Manduca A, Ehman RL. Hepatic MR elastography: clinical performance in a series of 1377 consecutive examinations. Radiology. 2016;278(01):114–24.

    Article  PubMed  Google Scholar 

  12. Wagner M, Corcuera-Solano I, Lo G, et al. Technical failure of MR elastography examinations of the liver: experience from a large single-center study. Radiology. 2017;284(02):401–12.

    Article  PubMed  Google Scholar 

  13. Shiha G, Ibrahim A, Helmy A, et al. Asian-Pacific Association for the Study of the Liver (APASL) consensus guidelines on invasive and non-invasive assessment of hepatic fibrosis: a 2016 update. Hepatol Int. 2017;11(01):1–30.

    Article  PubMed  Google Scholar 

  14. Singh S, Venkatesh SK, Wang Z, et al. Diagnostic performance of magnetic resonance elastography in staging liver fibrosis: a systematic review and meta-analysis of individual participant data. Clin Gastroenterol Hepatol. 2015;13(03):440–51.

    Article  PubMed  Google Scholar 

  15. Singh S, Venkatesh SK, Loomba R, et al. Magnetic resonance elastography for staging liver fibrosis in non-alcoholic fatty liver disease: a diagnostic accuracy systematic review and individual participant data pooled analysis. Eur Radiol. 2016;26(5):1431–40.

    Article  PubMed  Google Scholar 

  16. Cui J, Heba E, Hernandez C, et al. Magnetic resonance elastography is superior to acoustic radiation force impulse for the diagnosis of fibrosis in patients with biopsy-proven nonalcoholic fatty liver disease: a prospective study. Hepatology. 2016;63:453–61.

    Article  PubMed  Google Scholar 

  17. Imajo K, Kessoku T, Honda Y, et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology. 2016;150:626–37.

    Article  PubMed  Google Scholar 

  18. Loomba R, Cui J, Wolfson T, et al. Novel 3D magnetic resonance elastography for the noninvasive diagnosis of advanced fibrosis in NAFLD: a prospective study. Am J Gastroenterol. 2016;111:986–94.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pavlidea M, Banerjee R, Tunnicliffe EM, et al. Multiparametric magnetic resonance imaging for the assessment of non-alcoholic fatty liver disease severity. Liver Int. 2017;37:1065–73.

    Article  CAS  Google Scholar 

  20. Bookwalter CA, Venkatesh SK, John E, Eaton JE, et al. MR elastography in primary sclerosing cholangitis: correlating liver stiffness with bile duct strictures and parenchymal changes. Abdom Radiol. 2018;43:3260–70.

    Article  Google Scholar 

  21. Ichikawa S, Motosugi U, Enomoto N, Onishi H. Magnetic resonance elastography can predict development of hepatocellular carcinoma with longitudinally acquired two-point data. Eur Radiol. 2019;29:1013–21.

    Article  PubMed  Google Scholar 

  22. Lee DH, Lee M, Chang W. Prognostic role of liver stiffness measurements using magnetic resonance elastography in patients with compensated chronic liver disease. Eur Radiol. 2018;28:3513–21.

    Article  PubMed  Google Scholar 

  23. Chen J, Yin M, Talwalkar JA, et al. Diagnostic performance of MR elastography and vibration-controlled transient elastography in the detection of hepatic fibrosis in patients with severe to morbid obesity. Radiology. 2017;283(2):418–28.

    Article  PubMed  Google Scholar 

  24. Yin M, Venkatesh SK. Ultrasound or MR elastography of liver: which one shall I use? Abdom Radiol. 2018;43:1546–51.

    Article  Google Scholar 

  25. Serai SD, Trout AT. Can MR elastography be used to measure liver stiffness in patients with iron overload? Abdom Radiol. 2018; https://doi.org/10.1007/s00261-018-1723-9.

    Article  Google Scholar 

  26. Donato H, França M, Candelária I, Caseiro-Alves F. Liver MRI: from basic protocol to advanced techniques. Eur J Radiol. 2017;93:30–9.

    Article  PubMed  Google Scholar 

  27. Van Beers BE, Daire J-L, Garteiser P. New imaging techniques for liver diseases. J Hepatol. 2015;62:690–700.

    Article  PubMed  Google Scholar 

  28. Neri E, Bali MA, Ba-Ssalamah A, et al. ESGAR consensus statement on liver MR imaging and clinical use of liver-specific contrast agents. Eur Radiol. 2016;26:921–31.

    Article  CAS  PubMed  Google Scholar 

  29. Jhaveri K, Cleary S, Audet P, et al. Consensus statements from a multidisciplinary expert panel on the utilization and application of a liver-specific MRI contrast agent (gadoxetic acid). Am J Roentgenol. 2015;204:498–509.

    Article  Google Scholar 

  30. Luciani A, Frédéric Pigneur F. Séquences de diffusion et produits de contraste hépatobiliaires en IRM du foie: les évolutions en cours. POST’U 2017, pp 49–54.

    Google Scholar 

  31. Lewis S, Dyvorne H, Cui Y, Taouli B. Diffusion-weighted imaging of the liver: techniques and applications. Magn Reson Imag Clin N Am. 2014;22:373–95.

    Article  Google Scholar 

  32. Ronot M, Clift AK, Vilgrain V, Frilling A. Functional imaging in liver tumours. J Hepatol. 2016;65:1017–30.

    Article  PubMed  Google Scholar 

  33. Vilgrain V, Esvan M, Ronot M, et al. A meta-analysis of diffusion-weighted and gadoxetic acid-enhanced MR imaging for the detection of liver metastases. Eur Radiol. 2016;26:4595–615.

    Article  PubMed  Google Scholar 

  34. França M, Martí-Bonmatí L, Alberich-Bayarri A, et al. Evaluation of fibrosis and inflammation in diffuse liver diseases using intravoxel incoherent motion diffusion-weighted MR imaging. Abdom Radiol. 2017;42(2):468–77.

    Article  Google Scholar 

  35. Schalkx HJ, van Stralen M, Coenegrachts K, et al. Liver perfusion in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI): comparison of enhancement in Gd-BT-DO3A and Gd-EOB-DTPA in normal liver parenchyma. Eur Radiol. 2014;24:2146–56.

    Article  PubMed  Google Scholar 

  36. Ricke J, Seidensticker M. Molecular imaging and liver function assessment by hepatobiliary MRI. J Hepatol. 2016;65:1081–2.

    Article  PubMed  Google Scholar 

  37. Nilsson H, Blomqvist L, Douglas L, Nordell A, Janczewska I, Naslund E, et al. Gd-EOB-DTPA-enhanced MRI for the assessment of liver function and volume in liver cirrhosis. Br J Radiol. 2013;86:20120653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kukuk GM, Schaefer SG, Fimmers R, et al. Hepatobiliary magnetic resonance imaging in patients with liver disease: correlation of liver enhancement with biochemical liver function tests. Eur Radiol. 2014;24:2482–90.

    Article  PubMed  Google Scholar 

  39. Truhn D, Kuhl CK, Ciritsis A. A new model for MR evaluation of liver function with gadoxetic acid, including both uptake and excretion. Eur Radiol. 2019;29:383–91.

    Article  PubMed  Google Scholar 

  40. Yoneda N, Matsui O, Ikeno H, et al. Correlation between Gd-EOB-DTPA-enhanced MR imaging findings and OATP1B3 expression in chemotherapy-associated sinusoidal obstruction syndrome. Abdom Imaging. 2015;40:3099–103.

    Article  PubMed  Google Scholar 

  41. Lee NK, Kim S, Kim GH, et al. Significance of the “delayed hyperintense portal vein sign” in the hepatobiliary phase MRI obtained with Gd-EOB-DTPA. J Magn Reson Imaging. 2012;36:678–85.

    Article  PubMed  Google Scholar 

  42. Han NY, Park BJ, Sung DJ, et al. Chemotherapy-induced focal hepatopathy in patients with gastrointestinal malignancy: gadoxetic acid-enhanced and diffusion-weighted MR imaging with clinical-pathologic correlation. Radiology. 2014;271:416–20.

    Article  PubMed  Google Scholar 

  43. Unal E, Karaosmanoğlu AD, Ozmen MN, et al. Hepatobiliary phase liver MR imaging findings after Oxaliplatin-based chemotherapy in cancer patients. Abdom Radiol. 2018;43(9):2321–8.

    Article  Google Scholar 

  44. Zhou Z-P, Long L-L, Qiu W-J, et al. Evaluating segmental liver function using T1 mapping on Gd-EOB-DTPA-enhanced MRI with a 3.0 Tesla. BMC Med Imaging. 2017;17:20.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ding Y, Rao S-X, Chen C, et al. Assessing liver function in patients with HBV-related HCC: a comparison of T1 mapping on Gd-EOB-DTPA-enhanced MR imaging with DWI. Eur Radiol. 2015;25:1392–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Self Study

Self Study

1.1 Questions

  1. 1.

    Which are the incorrect answers concerning the use of Gd-EOB-DTPA (Primovist) in liver evaluation?

    1. (a)

      Primovist is an extracellular contrast agent

    2. (b)

      In liver cirrhosis with a multinodular pattern the MRI protocol include obligatory DWI and multiphase dynamic 3DT1 wi acquisition with Gd-EOB-DTPA

    3. (c)

      Around 3–5% of the i.v. injected dose is uptake by functioning hepatocytes and excreted via the biliary tree

    4. (d)

      The 3D T1 acquisition for the hepatobiliary phase is made in a nonicteric patient after 20 min

    5. (e)

      Liver fibrosis is better delineated in HBP compared to the nonenhanced 3D T1 MRI acquisition

  2. 2.

    Which answers are incorrect?

    1. (a)

      MR-elastography (MRE) is optimal to detect liver hemochromatosis

    2. (b)

      In liver fibrosis there is a decrease of stiffness

    3. (c)

      DWI correlated with ADC values can be used as biomarkers in monitoring the effectiveness of oncology therapies

    4. (d)

      ADC values doesn’t allow to evaluate patients with moderate or severe liver fibrosis

    5. (e)

      MRE stiffness is different in liver solid tumors compared with the normal liver parenchyma

1.2 Answers

  1. 1.

    Which are the incorrect answers concerning the use of Gd-EOB-DTPA (Primovist) in liver evaluation?

    Incorrect answers: a, c because:

    • (a) Primovist is a hepato-specific contrast agent

    • (c) About 50% of the i.v. injected dose is uptake by functioning hepatocytes and excreted via the biliary tree

  2. 2.

    Which answers are incorrect?

    Incorrect answers: a, b, d because:

    • (a) MRE is not indicate in liver hemochromatosis. In patients with moderate to severe hepatic iron overload (the short T2 time of the affected liver) the signal intensity of the liver is so low that the shear waves cannot be visualized on the phase-contrast 2D GRE acquisition

    • (b) In liver fibrosis there is an increase of stiffness

    • (d) ADC values ​​of patients with moderate to severe fibrosis are lower than those measured in cases of minimal or no fibrosis.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lupescu, I.G., Grasu, M.C., Dumitru, R.L. (2020). MR Elastography and Functional MRI of the Liver. In: Radu-Ionita, F., Pyrsopoulos, N., Jinga, M., Tintoiu, I., Sun, Z., Bontas, E. (eds) Liver Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-24432-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24432-3_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24431-6

  • Online ISBN: 978-3-030-24432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics