Skip to main content

Hsp60 Friend and Foe of the Nervous System

  • Chapter
  • First Online:
Heat Shock Proteins in Neuroscience

Abstract

Hsp60 belongs to the subgroup of molecular chaperones named chaperonins and, typically, resides and functions in the mitochondria but it is also present in extramitochondrial sites. It chaperones client peptides as they fold to achieve the native conformation and also displays anti-stress roles by helping stress-damaged proteins regain a functional shape. Thus, Hsp60 is central to the integrity and functionality of mitochondria and energy production. All cells in the nervous system depend on Hsp60 so when the chaperonin malfunctions the consequences on nervous tissues are usually devastating, causing diverse diseases. These are the Hsp60 chaperonopathies, which can be genetic or acquired with the former caused by gene variants and the latter by various post-transcriptional mechanisms. All forms of chaperonopathies, i.e., by defect, by excess, and by mistake, associated with Hsp60 have been described, and some illustrative examples are discussed here. It is clear that this chaperonin is key to neuromuscular physiology but, when qualitatively and/or quantitatively abnormal causes diseases, often very serious.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aβ:

Amyloid-β

AChR:

Acetylcholine receptor

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

BBB:

Blood-brain barrier

CCT:

Chaperonin containing TCP-1

CNS:

Central nervous system

CNV:

Copy number variant

CP:

Chaperoning system

CSF:

Cerebrospinal fluid

CypD:

Cyclophilin D

GMB:

Glioblastoma multiforme

HIP1:

Huntingtin-interacting protein 1

Hsp:

Heat shock protein;

HSP:

Hereditary spastic paraplegia

IS:

Immune system

L-DOPA:

3,4-dihydroxy- L-phenylalanine

MECP2:

Methyl CpG binding protein 2

MG:

Myasthenia gravis

MS:

Multiple sclerosis

mtUPR:

The mitochondrial unfolded protein response

PBMNc:

Peripheral blood mononuclear cells

ROS:

Reactive oxygen species

SNP:

Single-nucleotide polymorphism

SPG:

Spastic paraplegia

TLE:

Temporal lobe epilepsy

TRiC:

TCP-1 ring complex

WHO:

World Health Organization

References

  • Andreone BJ, Chow BW, Tata A et al (2017) Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of Caveolae-mediated transcytosis. Neuron 94:581–594.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arellano JI, Muñoz A, Ballesteros-Yáñez I et al (2004) Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus. Brain 127:45–64

    Article  CAS  PubMed  Google Scholar 

  • Bajramović JJ, Lassmann H, Andvan Noort JM (1997) Expression of alphaB-crystallin in glia cells during lesional development in multiple sclerosis. J Neuroimmunol 78:143–151

    Article  PubMed  Google Scholar 

  • Ballard C, Gauthier S, Corbett A et al (2011) Alzheimer’s disease. Lancet (London, England) 377:1019–1031

    Article  Google Scholar 

  • Beck JS, Mufson EJ, Counts SE (2016) Evidence for mitochondrial UPR gene activation in familial and sporadic Alzheimer’s disease. Curr Alzheimer Res 13:610–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger E, Rath E, Yuan D et al (2016) Mitochondrial function controls intestinal epithelial stemness and proliferation. Nat Commun 7:13171

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergey GK (2013) Neurostimulation in the treatment of epilepsy. Exp Neurol 244:87–95

    Article  PubMed  Google Scholar 

  • Bidmon HJ, Görg B, Palomero-Gallagher N et al (2004) Heat shock protein-27 is upregulated in the temporal cortex of patients with epilepsy. Epilepsia 45:1549–1559

    Article  CAS  PubMed  Google Scholar 

  • Birk OS, Gur SL, Elias D et al (1999) The 60-kDa heat shock protein modulates allograft rejection. Proc Natl Acad Sci USA 96:5159–5163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd-Kimball D, Sultana R, Poon HF et al (2005) Proteomic identification of proteins specifically oxidized by intracerebral injection of amyloid beta-peptide (1-42) into rat brain: implications for Alzheimer’s disease. Neuroscience 132:313–324

    Article  CAS  PubMed  Google Scholar 

  • Bross P, Fernandez-Guerra P (2016) Disease-associated mutations in the HSPD1 gene encoding the large subunit of the mitochondrial HSP60/HSP10 chaperonin complex. Front Mol Biosci 3:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bross P, Li Z, Hansen J et al (2007) Single-nucleotide variations in the genes encoding the mitochondrial Hsp60/Hsp10 chaperone system and their disease-causing potential. J Hum Genet 52:56–65

    Article  CAS  PubMed  Google Scholar 

  • Bross P, Naundrup S, Hansen J et al (2008) The Hsp60-(p.V98I) mutation associated with hereditary spastic paraplegia SPG13 compromises chaperonin function both in Vitro and in Vivo. J Biol Chem 283:15694–15700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrese V, Sultana R, Scapagnini G et al (2006) Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer’s disease. Antioxid Redox Signal 8:1975–1986

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Mancuso C, Ravagna A et al (2007) In vivo induction of heat shock proteins in the substantia nigra following L-DOPA administration is associated with increased activity of mitochondrial complex I and nitrosative stress in rats: regulation by glutathione redox state. J Neurochem 101:709–717

    Article  CAS  PubMed  Google Scholar 

  • Campanella C, Bucchieri F, Ardizzone NM et al (2008) Upon oxidative stress, the antiapoptotic Hsp60/procaspase-3 complex persists in mucoepidermoid carcinoma cells. Eur J Histochem 52:221–228

    Article  CAS  PubMed  Google Scholar 

  • Campanella C, Caruso Bavisotto C, Marino Gammazza A et al (2014) Exosomal Heat Shock Proteins as New Players in Tumour Cell-to-cell Communication. J Circ Biomarkers 3:1–10

    Article  Google Scholar 

  • Campanella C, Rappa F, Sciumè C et al (2015) Heat shock protein 60 levels in tissue and circulating exosomes in human large bowel cancer before and after ablative surgery. Cancer 121:3230–3239

    Article  CAS  PubMed  Google Scholar 

  • Campanella C, D’Anneo A, Marino Gammazza A et al (2016) The histone deacetylase inhibitor SAHA induces HSP60 nitration and its extracellular release by exosomal vesicles in human lung-derived carcinoma cells. Oncotarget 7:28849–28867

    Article  PubMed  Google Scholar 

  • Cappello F, Conway de Macario E, Marasà L et al (2008) Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy. Cancer Biol Ther 7:801–809

    Article  CAS  PubMed  Google Scholar 

  • Cappello F, Conway de Macario E, Di Felice V et al (2009) Chlamydia trachomatis infection and anti-Hsp60 immunity: the two sides of the coin. PLoS Pathog 5:e1000552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cappello F, Caramori G, Campanella C et al (2011) Convergent sets of data from in vivo and in vitro methods point to an active role of Hsp60 in chronic obstructive pulmonary disease pathogenesis. PLoS One 6:e28200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappello F, Marino Gammazza A, Palumbo Piccionello A et al (2014) Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Expert Opin Ther Targets 18:185–208

    Article  CAS  PubMed  Google Scholar 

  • Caruso Bavisotto C, Marino Gammazza A, Rappa F et al (2013) Exosomes: can doctors still ignore their existence? EuroMediterranean Biomed J 8:136–139

    Google Scholar 

  • Caruso Bavisotto C, Cappello F, Macario AJL et al (2017a) Exosomal HSP60: a potentially useful biomarker for diagnosis, assessing prognosis, and monitoring response to treatment. Expert Rev Mol Diagn 17:815–822

    Article  CAS  PubMed  Google Scholar 

  • Caruso Bavisotto C, Nikolic D, Marino Gammazza A et al (2017b) The dissociation of the Hsp60/pro-Caspase-3 complex by bis(pyridyl)oxadiazole copper complex (CubipyOXA) leads to cell death in NCI-H292 cancer cells. J Inorg Biochem 170:8–16

    Article  CAS  PubMed  Google Scholar 

  • Caruso Bavisotto C, Graziano F, Rappa F et al (2018) Exosomal chaperones and miRNAs in gliomagenesis: state-of-art and theranostics perspectives. Int J Mol Sci 19:2626

    Article  PubMed Central  CAS  Google Scholar 

  • Chang CC, Lui CC, Lee C-C et al (2012) Clinical significance of serological biomarkers and neuropsychological performances in patients with temporal lobe epilepsy. BMC Neurol 12:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng W, Li Y, Hou X et al (2014) HSP60 is involved in the neuroprotective effects of naloxone. Mol Med Rep 10:2172–2176

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Malakowsky CA, Talent JM et al (2003) Anti-apoptotic proteins are oxidized by Abeta25-35 in Alzheimer’s fibroblasts. Biochim Biophys Acta 1637:135–141

    Article  CAS  PubMed  Google Scholar 

  • Christensen JH, Nielsen MN, Hansen J et al (2010) Inactivation of the hereditary spastic paraplegia-associated Hspd1 gene encoding the Hsp60 chaperone results in early embryonic lethality in mice. Cell Stress Chaperones 15:851–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czarnecka AM, Campanella C, Zummo G, Cappello F (2006) Mitochondrial chaperones in cancer: from molecular biology to clinical diagnostics. Cancer Biol Ther 5:714–720

    Article  CAS  PubMed  Google Scholar 

  • D’Souza SM, Brown IR (1998) Constitutive expression of heat shock proteins Hsp90, Hsc70, Hsp70 and Hsp60 in neural and non-neural tissues of the rat during postnatal development. Cell Stress Chaperones 3:188–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Eadie MJ (2012) Shortcomings in the current treatment of epilepsy. Expert Rev Neurother 12:1419–1427

    Article  CAS  PubMed  Google Scholar 

  • Efthymiou G, Dardiotis E, Liaskos C et al (2016) Anti-hsp60 antibody responses based on helicobacter pylori in patients with multiple sclerosis: (ir)relevance to disease pathogenesis. J Neuroimmunol 298:19–23

    Article  CAS  PubMed  Google Scholar 

  • Fabriek BO, Van Haastert ES, Galea I et al (2005) CD163-positive perivascular macrophages in the human CNS express molecules for antigen recognition and presentation. Glia 51:297–305

    Article  PubMed  Google Scholar 

  • Fink JK (2006) Hereditary spastic paraplegia. Curr Neurol Neurosci Rep 6:65–76

    Article  CAS  PubMed  Google Scholar 

  • Fontaine B, Davoine CS, Dürr A et al (2000) A new locus for autosomal dominant pure spastic paraplegia, on chromosome 2q24-q34. Am J Hum Genet 66:702–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Füst G, Uray K, Bene L et al (2012) Comparison of epitope specificity of anti-heat shock protein 60/65 IgG type antibodies in the sera of healthy subjects, patients with coronary heart disease and inflammatory bowel disease. Cell Stress Chaperones 17:215–227

    Article  PubMed  CAS  Google Scholar 

  • Ghosh JC, Dohi T, Kang BH, Altieri DC (2008) Hsp60 regulation of tumor cell apoptosis. J Biol Chem 283:5188–5194

    Article  CAS  PubMed  Google Scholar 

  • Ghosh JC, Siegelin MD, Dohi T, Altieri DC (2010) Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res 70:8988–8993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannoni G (2006) Multiple sclerosis cerebrospinal fluid biomarkers. Dis Markers 22:187–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goedert M, Spillantini MG, Jakes R et al (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526

    Article  CAS  PubMed  Google Scholar 

  • Goldberg EM, Coulter DA (2013) Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat Rev Neurosci 14:337–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graziano F, Caruso Bavisotto C, Marino Gammazza A et al (2018) Chaperonology: the third eye on brain gliomas. Brain Sci 8:6

    Article  CAS  Google Scholar 

  • Gupta RS (1995) Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol 15:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hansen JJ, Dürr A, Cournu-Rebeix I et al (2002) Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 70:1328–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen J, Bross P, Westergaard M et al (2003) Genomic structure of the human mitochondrial chaperonin genes: HSP60 and HSP10 are localised head to head on chromosome 2 separated by a bidirectional promoter. Hum Genet 112:71–77

    Article  CAS  PubMed  Google Scholar 

  • Hansen J, Svenstrup K, Ang D et al (2007) A novel mutation in the HSPD1 gene in a patient with hereditary spastic paraplegia. J Neurol 254:897–900

    Article  CAS  PubMed  Google Scholar 

  • Hemmingsen SM, Woolford C, van der Vies SM et al (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330–334

    Article  CAS  PubMed  Google Scholar 

  • Henderson B, Pockley AG (2010) Molecular chaperones and protein-folding catalysts as intercellular signaling regulators in immunity and inflammation. J Leukoc Biol 88:445–462

    Article  CAS  PubMed  Google Scholar 

  • Henderson B, Fares MA, Lund PA (2013) Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions. Biol Rev Camb Philos Soc 88:955–987

    Article  PubMed  Google Scholar 

  • Hewamadduma CAA, Kirby J, Kershaw C et al (2008) HSP60 is a rare cause of hereditary spastic paraparesis, but may act as a genetic modifier. Neurology 70:1717–1718

    Article  CAS  PubMed  Google Scholar 

  • Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115–145

    Article  CAS  PubMed  Google Scholar 

  • Iwatsubo T, Odaka A, Suzuki N et al (1994) Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 13:45–53

    Article  CAS  PubMed  Google Scholar 

  • Janelidze S, Mattsson N, Stomrud E et al (2018) CSF biomarkers of neuroinflammation and cerebrovascular dysfunction in early Alzheimer disease. Neurology 91:e867–e877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang YQ, Wang XL, Cao XH et al (2013) Increased heat shock transcription factor 1 in the cerebellum reverses the deficiency of Purkinje cells in Alzheimer’s disease. Brain Res 1519:105–111

    Article  CAS  PubMed  Google Scholar 

  • Kandratavicius L, Hallak JE, Carlotti CG et al (2014) Hippocampal expression of heat shock proteins in mesial temporal lobe epilepsy with psychiatric comorbidities and their relation to seizure outcome. Epilepsia 55:1834–1843

    Article  CAS  PubMed  Google Scholar 

  • Kharlamov EA, Lepsveridze E, Meparishvili M et al (2011) Alterations of GABA(a) and glutamate receptor subunits and heat shock protein in rat hippocampus following traumatic brain injury and in posttraumatic epilepsy. Epilepsy Res 95:20–34

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Kim JY, Ko AR, Kang TC (2013) Reduction in heat shock protein 90 correlates to neuronal vulnerability in the rat piriform cortex following status epilepticus. Neuroscience 255:265–277

    Article  CAS  PubMed  Google Scholar 

  • Koldewey P, Horowitz S, Bardwell JCA (2017) Chaperone-client interactions: non-specificity engenders multifunctionality. J Biol Chem 292:12010–12017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koren J, Jinwal UK, Lee DC et al (2009) Chaperone signalling complexes in Alzheimer’s disease. J Cell Mol Med 13:619–630

    Article  CAS  PubMed  Google Scholar 

  • Kusk MS, Damgaard B, Risom L et al (2016) Hypomyelinating Leukodystrophy due to HSPD1 mutations: a new patient. Neuropediatrics 47:332–335

    Article  CAS  PubMed  Google Scholar 

  • Li M, Li Z, Yao Y et al (2017) Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A 114:E396–E405

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  CAS  PubMed  Google Scholar 

  • Liu XY, Yang JL, Chen LJ et al (2008) Comparative proteomics and correlated signaling network of rat hippocampus in the pilocarpine model of temporal lobe epilepsy. Proteomics 8:582–603

    Article  CAS  PubMed  Google Scholar 

  • Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  PubMed  Google Scholar 

  • Macario AJL, Conway de Macario E (1997) Stress genes: an introductory overview. Stress 1:123–134

    Article  CAS  PubMed  Google Scholar 

  • Macario AJL, Conway de Macario E (2002) Sick chaperones and ageing: a perspective. Ageing Res Rev 1:295–311

    Article  CAS  PubMed  Google Scholar 

  • Macario AJL, Conway de Macario E (2005) Sick chaperones, cellular stress, and disease. N Engl J Med 353:1489–1501

    Article  CAS  PubMed  Google Scholar 

  • Macario AJL, Conway de Macario E (2007) Chaperonopathies and chaperonotherapy. FEBS Lett 581:3681–3688

    Article  CAS  PubMed  Google Scholar 

  • Macario AJL, Conway de Macario E, Cappello F (2013) The chaperonopathies : diseases with defective molecular chaperones. Springer, Dordrecht/Heidelberg/New York/London

    Book  Google Scholar 

  • Magen D, Georgopoulos C, Bross P et al (2008) Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet 83:30–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnoni R, Palmfeldt J, Christensen JH et al (2013) Late onset motoneuron disorder caused by mitochondrial Hsp60 chaperone deficiency in mice. Neurobiol Dis 54:12–23

    Article  CAS  PubMed  Google Scholar 

  • Mangione MR, Vilasi S, Marino C et al (2016) Hsp60, amateur chaperone in amyloid-beta fibrillogenesis. Biochim Biophys Acta 1860:2474–2483

    Article  CAS  PubMed  Google Scholar 

  • Marino Gammazza A, Bucchieri F, Grimaldi LME et al (2012) The molecular anatomy of human Hsp60 and its similarity with that of bacterial orthologs and acetylcholine receptor reveal a potential pathogenetic role of anti-chaperonin immunity in myasthenia gravis. Cell Mol Neurobiol 32:943–947

    Article  CAS  Google Scholar 

  • Marino Gammazza A, Rizzo M, Citarrella R et al (2014) Elevated blood Hsp60, its structural similarities and cross-reactivity with thyroid molecules, and its presence on the plasma membrane of oncocytes point to the chaperonin as an immunopathogenic factor in Hashimoto’s thyroiditis. Cell Stress Chaperones 19:343–353

    Article  CAS  PubMed  Google Scholar 

  • Marino Gammazza A, Colangeli R, Orban G et al (2015) Hsp60 response in experimental and human temporal lobe epilepsy. Sci Rep 5:9434

    Article  PubMed  CAS  Google Scholar 

  • Marino Gammazza A, Caruso Bavisotto C, Barone R et al (2016) Alzheimer’s disease and molecular chaperones: current knowledge and the future of chaperonotherapy. Curr Pharm Des 22:4040–4049

    Article  PubMed  CAS  Google Scholar 

  • Marino Gammazza A, Caruso Bavisotto C, David S et al (2017) HSP60 is a ubiquitous player in the physiological and pathogenic interactions between the chaperoning and the immune systems. Curr Immunol Rev 13:44–55

    Google Scholar 

  • Martin K, Jackson CF, Levy RG, Cooper PN (2016) Ketogenic diet and other dietary treatments for epilepsy. Cochrane Database Syst Rev 2:CD001903

    PubMed  Google Scholar 

  • Meriin AB, Sherman MY (2005) Role of molecular chaperones in neurodegenerative disorders. Int J Hyperth 21:403–419

    Article  CAS  Google Scholar 

  • Miyamoto Y, Eguchi T, Kawahara K et al (2015) Hypomyelinating leukodystrophy-associated missense mutation in HSPD1 blunts mitochondrial dynamics. Biochem Biophys Res Commun 462:275–281

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto Y, Megumi FT, Hasegawa N et al (2016) Data supporting mitochondrial morphological changes by SPG13-associated HSPD1 mutants. Data Brief 6:482–488

    Article  PubMed  PubMed Central  Google Scholar 

  • Nemirovsky A, Fisher Y, Baron R et al (2011) Amyloid beta-HSP60 peptide conjugate vaccine treats a mouse model of Alzheimer’s disease. Vaccine 29:4043–4050

    Article  CAS  PubMed  Google Scholar 

  • Newsom-Davis J (1990) Diseases of the myoneural junction. Res Publ Assoc Res Nerv Ment Dis 68:233–240

    CAS  PubMed  Google Scholar 

  • Novo G, Cappello F, Rizzo M et al (2011) Hsp60 and heme oxygenase-1 (Hsp32) in acute myocardial infarction. Transl Res 157:285–292

    Article  CAS  PubMed  Google Scholar 

  • Ousman SS, Frederick A, Lim EMF (2017) Chaperone proteins in the central nervous system and peripheral nervous system after nerve injury. Front Neurosci 11:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Parnas A, Nadler M, Nisemblat S et al (2009) The MitCHAP-60 disease is due to entropic destabilization of the human mitochondrial Hsp60 oligomer. J Biol Chem 284:28198–28203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitkänen A, Sutula TP (2002) Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol 1:173–181

    Article  PubMed  Google Scholar 

  • Pockley AG, Muthana M, Calderwood SK (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33:71–79

    Article  CAS  PubMed  Google Scholar 

  • Prabhakar S, Kurien E, Gupta RS et al (1994) Heat shock protein immunoreactivity in CSF: correlation with oligoclonal banding and demyelinating disease. Neurology 44:1644–1648

    Article  CAS  PubMed  Google Scholar 

  • Quintana FJ, Cohen IR (2011) The HSP60 immune system network. Trends Immunol 32:89–95

    Article  CAS  PubMed  Google Scholar 

  • Quintana FJ, Getz G, Hed G et al (2003) Cluster analysis of human autoantibody reactivities in health and in type 1 diabetes mellitus: a bio-informatic approach to immune complexity. J Autoimmun 21:65–75

    Article  CAS  PubMed  Google Scholar 

  • Quintana FJ, Hagedorn PH, Elizur G et al (2004) Functional immunomics: microarray analysis of IgG autoantibody repertoires predicts the future response of mice to induced diabetes. Proc Natl Acad Sci 101:14615–14621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintana FJ, Farez MF, Izquierdo G et al (2012) Antigen microarrays identify CNS-produced autoantibodies in RRMS. Neurology 78:532–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman M, Steuer J, Gillgren P et al (2017) Induction of dendritic cell–mediated activation of t cells from atherosclerotic plaques by human heat shock protein 60. J Am Heart Assoc 6:e006778

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajaiah R, Moudgil KD (2009) Heat-shock proteins can promote as well as regulate autoimmunity. Autoimmun Rev 8:388–393

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12:623–635

    Article  CAS  PubMed  Google Scholar 

  • Rappa F, Farina F, Zummo G et al (2012) HSP-molecular chaperones in cancer biogenesis and tumor therapy: an overview. Anticancer Res 32:5139–5150

    CAS  PubMed  Google Scholar 

  • Rappa F, Unti E, Baiamonte P et al (2013) Different immunohistochemical levels of Hsp60 and Hsp70 in a subset of brain tumors and putative role of Hsp60 in neuroepithelial tumorigenesis. Eur J Histochem 57:e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravizza T, Gagliardi B, Noé F et al (2008) Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 29:142–160

    Article  CAS  PubMed  Google Scholar 

  • Rowland SE, Robb FT (2017) Structure, function and evolution of the Hsp60 chaperonins. Prokaryotic chaperonins. Springer, Dordrecht/Heidelberg/New York/London, pp 3–20

    Google Scholar 

  • Rowley S, Patel M (2013) Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med 62:121–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Vázquez E, de Castro P (2003) “2-6-11” motif in heat shock protein 60 and central nervous system antigens: a preliminary study in multiple sclerosis patients. J Physiol Biochem 59:1–9

    Article  PubMed  Google Scholar 

  • Saikali P, Antel JP, Pittet CL et al (2010) Contribution of astrocyte-derived IL-15 to CD8 T cell effector functions in multiple sclerosis. J Immunol 185:5693–5703

    Article  CAS  PubMed  Google Scholar 

  • Sendrowski K, Sobaniec W (2013) Hippocampus, hippocampal sclerosis and epilepsy. Pharmacol Rep 65:555–565

    Article  CAS  PubMed  Google Scholar 

  • Skjærven L, Cuellar J, Martinez A, Valpuesta JM (2015) Dynamics, flexibility, and allostery in molecular chaperonins. FEBS Lett 589:2522–2532

    Article  PubMed  CAS  Google Scholar 

  • Stringer JL, Agarwal KS, Dure LS (1997) Is cell death necessary for hippocampal mossy fiber sprouting? Epilepsy Res 27:67–76

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow RH, Burns JM, Khan SM (2010) The Alzheimer’s disease mitochondrial Cascade hypothesis. J Alzheimers Dis 20:S265–S279

    Article  PubMed  CAS  Google Scholar 

  • Tang H, Li J, Liu X et al (2016) Down-regulation of HSP60 suppresses the proliferation of glioblastoma cells via the ROS/AMPK/mTOR pathway. Sci Rep 6:28388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telling GC, Scott M, Mastrianni J et al (1995) Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 83:79–90

    Article  CAS  PubMed  Google Scholar 

  • Tomasello G, Rodolico V, Zerilli M et al (2011) Changes in immunohistochemical levels and subcellular localization after therapy and correlation and colocalization with CD68 suggest a pathogenetic role of Hsp60 in ulcerative colitis. Appl Immunohistochem Mol Morphol 19:552–561

    Article  CAS  PubMed  Google Scholar 

  • Traugott U, Reinherz EL, Raine CS (1983) Multiple sclerosis: distribution of T cell subsets within active chronic lesions. Science 219:308–310

    Article  CAS  PubMed  Google Scholar 

  • van Eden W, van der Zee R, Prakken B (2005) Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 5:318–330

    Article  PubMed  CAS  Google Scholar 

  • Van Liefferinge J, Massie A, Portelli J et al (2013) Are vesicular neurotransmitter transporters potential treatment targets for temporal lobe epilepsy? Front Cell Neurosci 7:139

    PubMed  PubMed Central  Google Scholar 

  • Veereshwarayya V, Kumar P, Rosen KM et al (2006) Differential effects of mitochondrial heat shock protein 60 and related molecular chaperones to prevent intracellular beta-amyloid-induced inhibition of complex IV and limit apoptosis. J Biol Chem 281:29468–29478

    Article  CAS  PubMed  Google Scholar 

  • Verrijn Stuart AA, Jager W, Klein MR et al (2012) Recognition of heat shock protein 60 epitopes in children with type 1 diabetes. Diabetes Metab Res Rev 28:527–534

    Article  CAS  PubMed  Google Scholar 

  • Vilasi S, Bulone D, Caruso Bavisotto C et al (2018) Chaperonin of group I: oligomeric spectrum and biochemical and biological implications. Front Mol Biosci 4:99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waldbaum S, Patel M (2010) Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy? J Bioenerg Biomembr 42:449–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walls KC, Coskun P, Gallegos-Perez JL et al (2012) Swedish Alzheimer mutation induces mitochondrial dysfunction mediated by HSP60 mislocalization of amyloid precursor protein (APP) and beta-amyloid. J Biol Chem 287:30317–30327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YT, Wu SB, Lee WY, Wei YH (2010) Mitochondrial respiratory dysfunction-elicited oxidative stress and posttranslational protein modification in mitochondrial diseases. Ann N Y Acad Sci 1201:147–156

    Article  CAS  PubMed  Google Scholar 

  • Wucherpfennig KW, Newcombe J, Li H et al (1992) Gamma delta T-cell receptor repertoire in acute multiple sclerosis lesions. Proc Natl Acad Sci U S A 89:4588–4592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto T, Yamamoto-Shimojima K, Ueda Y et al (2018) Independent occurrence of de novo HSPD1 and HIP1 variants in brothers with different neurological disorders - leukodystrophy and autism. Hum Genome Var 5:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang T, Hsu C, Liao W, Chuang JS (2008) Heat shock protein 70 expression in epilepsy suggests stress rather than protection. Acta Neuropathol 115:219–230

    Article  CAS  PubMed  Google Scholar 

  • Yoo BC, Kim SH, Cairns N et al (2001) Deranged expression of molecular chaperones in brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun 280:249–258

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Sun L, Zhu H et al (2012) Microglial LOX-1 reacts with extracellular HSP60 to bridge neuroinflammation and neurotoxicity. Neurochem Int 61:1021–1035

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Li Y, Hou X et al (2017) Neuroprotective effect of heat shock protein 60 on matrine-suppressed microglial activation. Exp Ther Med 14:1832–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.J.L.M, and E.C. de M. were partially supported by IMET. This work was done under the agreement between IEMEST (Italy) and IMET (USA) (this is IMET contribution number IMET 19-007).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marino Gammazza, A. et al. (2019). Hsp60 Friend and Foe of the Nervous System. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins in Neuroscience. Heat Shock Proteins, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-24285-5_1

Download citation

Publish with us

Policies and ethics