Skip to main content

Early Mechanisms of Cardiac Development

  • Chapter
  • First Online:
Heart of the Matter

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 1132 Accesses

Abstract

This chapter initially introduces the importance of animal models in understanding cardiac development. We will discuss the early stages of embryonic development, including gastrulation, formation of the linear heart tube and the looping process. We will then explore the concept of the organiser during early vertebrate development using the example of the Spemann-Mangold organiser of the amphibian embryo. Finally, we will expand on how cells in the embryo are able to interpret morphogen gradients by introducing the French Flag Model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolpert L, Tickle C (2011) Principles of development, vol 616, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  2. Bakkers J (2011) Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91:279

    Article  CAS  Google Scholar 

  3. Wittig J, Münsterberg A (2016) The early stages of heart development: insights from chicken embryos. J Cardiovasc Dev Dis 3:12

    Article  Google Scholar 

  4. Zaffran S, Frasch M (2002) Early signals in cardiac development. Circ Res 91:457

    Article  CAS  Google Scholar 

  5. Brand T (2003) Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol 258:1

    Article  CAS  Google Scholar 

  6. Gilbert S, F, Bareresi MJF (2016) Developmental biology, 11th edn. Sinauer, Sunderland, MA, USA. 888 p. 444

    Google Scholar 

  7. Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1

    Article  CAS  Google Scholar 

  8. Niehrs C (2004) Regionally specific induction by the Spemann-Mangold organizer. Nat Rev Genet 5:425

    Article  CAS  Google Scholar 

  9. Bodmer R (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118:179

    Google Scholar 

  10. Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill C, Zhang Y, Riggs S et al (1999) Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 104:1567

    Article  CAS  Google Scholar 

  11. Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L et al (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 9:1654

    Article  CAS  Google Scholar 

  12. Dyer LA, Kirby ML (2009) The role of secondary heart field in cardiac development. Dev Biol 336:137

    Article  CAS  Google Scholar 

  13. de la Cruz MV, Gmez CS, Arteaga MM, Arguello C (1977) Experimental study of the development of the truncus and the conus in the chick embryo. J Anat 123:661

    PubMed  PubMed Central  Google Scholar 

  14. Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5:877

    Article  CAS  Google Scholar 

  15. Rothenberg F, Hitomi M, Fisher SA, Watanabe M (2002) Initiation of apoptosis in the developing avian outflow tract myocardium. Dev Dyn 223:469

    Article  Google Scholar 

  16. Parmacek MS, Epstein JA (2005) Pursuing cardiac progenitors: regeneration redux. Cell 120:295

    Article  CAS  Google Scholar 

  17. Bruneau BG (2013) Signaling and transcriptional networks in heart development and regeneration. Cold Spring Harb Perspect Biol 5:a008292

    Article  Google Scholar 

  18. Männer J (2009) The anatomy of cardiac looping: a step towards the understanding of the morphogenesis of several forms of congenital cardiac malformations. Clin Anat 22:21

    Article  Google Scholar 

  19. Young KA, Wise JA, DeSaix P, Kruse DH, Poe B, Johnson E, et al. Anatomy & physiology. 1st ed. OpenStax College; 2013. 1335 p

    Google Scholar 

  20. Hiermeier F, Männer J (2017) Kinking and torsion can significantly improve the efficiency of valveless pumping in periodically compressed tubular conduits. Implications for understanding of the form-function relationship of embryonic heart tubes. J Cardiovasc Dev Dis 4:19

    Google Scholar 

  21. Jaffrin MY, Shapiro AH (1971) Peristaltic pumping. Annu Rev Fluid Mech 3:13

    Article  Google Scholar 

  22. Liebau G (1954) Ãœber ein ventilloses Pumpprinzip. Naturwissenschaften 41:327

    Article  Google Scholar 

  23. Liebau G (1955) Herzpulsation und Blutbewegung. Z Gesamte Exp Med 125:482

    Article  CAS  Google Scholar 

  24. Männer J, Wessel A, Yelbuz TM (2010) How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube. Dev Dyn 239:1035

    Article  Google Scholar 

  25. Forouhar AS, Liebling M, Hickerson A, Nasiraei-Moghaddam A, Tsai HJ, Hove JR et al (2006) The embryonic vertebrate heart tube is a dynamic suction pump. Science 312:751

    Article  CAS  Google Scholar 

  26. Taber LA, Zhang J, Perucchio R (2007) Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube. J Biomech Eng 129:441

    Article  Google Scholar 

  27. Baird A, King T, Miller LA (2012) Numerical study of scaling effects in peristalsis and dynamic suction pumping. In: Proceedings of the AMS, special session on biological fluid dynamics: modeling, computations, and applications, New Orleans, pp 129–148

    Google Scholar 

  28. Tu S, Chi NC (2012) Zebrafish models in cardiac development and congenital heart birth defects. Differentiation 84:4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Brand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Griffiths, J., Brand, T. (2019). Early Mechanisms of Cardiac Development. In: Terracciano, C., Guymer, S. (eds) Heart of the Matter. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-24219-0_2

Download citation

Publish with us

Policies and ethics