Skip to main content

Mast Cells in Tumor Angiogenesis and Lymphangiogenesis

  • Chapter
  • First Online:
The Mast Cell
  • 394 Accesses

Abstract

The ability of mast cells to store angiogenic growth factors and their cell-specific release of preformed factors into the surrounding tissue by piecemeal degranulation (Dvorak and Kissel 1991) indicate that their granules are a depot for endothelial survival factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaltomaa S, Lipponen P, Papinaho S et al (1993) Mast cells in breast cancer. Anticancer Res 13:785–788

    CAS  PubMed  Google Scholar 

  • Alessandri G, Raju KS, Gullino PM (1984) Characterization of a chemoattractant for endothelium induced by angiogenic effectors. Cancer Res 44:1579–1584

    PubMed  Google Scholar 

  • Bashkin P, Razin E, Eldor A et al (1990) Degranulating mast cells secrete an endoglycosidase which degrades heparin sulfate in subendothelial extracelluar matrix. Blood 75:2204–2212

    CAS  PubMed  Google Scholar 

  • Blair RJ, Meng H, Marchese MJ et al (1997) Tryptase is a novel, potent angiogenic factor. J Clin Invest 99:2691–2700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brideau G, Makinen MJ, Elamaa H et al (2007) Endostatin overexpression inhibits lymhangiogenesis and lymph node metastasis in mice. Cancer Res 67:11528–11535

    Article  CAS  PubMed  Google Scholar 

  • Carlini MJ, Dalurzo MC, Lastiri JM et al (2010) Mast cell phenotypes and microvessels in non-small cell lung cancer and its prognostic significance. Hum Pathol 41:697–705

    Article  CAS  PubMed  Google Scholar 

  • Castellot JJ, Karnovsky MJ, Spiegelman BM (1982) Differentiation-dependent stimulation of neovascularization and endothelial cell chemotaxis by 3T3 adipocytes. Proc Natl Acad Sci U S A 79:5597–5601

    Article  PubMed  PubMed Central  Google Scholar 

  • Cawley EF, Hoch-Ligeti C (1961) Association of tissue mast cells and skin tumors. Arch Dermatol 83:92–96

    Article  CAS  PubMed  Google Scholar 

  • Clinton M, Long WF, Williamson FB et al (1988) Effect of the mast cell activator compound 48/80 and heparin on angiogenesis in the chick chorioallantoic membrane. Int J Microcirc Clin Exp 7:315–326

    CAS  PubMed  Google Scholar 

  • Coussens LM, Web Z (1996) Matrix metalloproteinases and the development of cancer. Chem Biol 3:895–904

    Article  CAS  PubMed  Google Scholar 

  • Crivellato E, Nico B, Vacca A et al (2002) Mast cell heterogeneity in B-cell non-Hodgkin’s lymphomas: an ultrastructural study. Leuk Lymphoma 43:2201–2205

    Article  Google Scholar 

  • Dabbous M, Walker R, Haney L et al (1986) Mast cells and matrix degradation at sites of tumor invasion in rat mammary adenocarcinoma. Br J Cancer 54:459–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dabiri S, Huntsman D, Makretsov N et al (2004) The presence of stromal mast cells identifies a subset of invasive breast cancers with a favorable prognosis. Mod Pathol 17:690–695

    Article  PubMed  Google Scholar 

  • Della Rovere F, Granata A, Familiari D et al (2007) Mast cells in invasive ductal breast cancer different: behavior in high and minimum hormone-receptive cancers. Anticancer Res 27:2465–2471

    CAS  PubMed  Google Scholar 

  • Dethlefsen SM, Matsuura N, Zetter BR (1994) Mast cell accumulation at sites of murine tumor implantation: implications for angiogenesis and tumor metastasis. Invasion Metastasis 14:395–408

    PubMed  Google Scholar 

  • Di Girolamo N, Wakefiled D (2000) In vitro and in vivo expression of interstitial collagenase/MMP-1 by human mast cells. Dev Immunol 7:131–142

    Google Scholar 

  • Dunn MR, Montogomery POB (1957) A study of the relationship of mast cells to carcinoma in situ of the uterine cervix. Lab Invest 6:542–546

    CAS  PubMed  Google Scholar 

  • Dvorak AM (1992) Basophils and mast cells: piecemeal degranulation in situ and ex vivo: a possible mechanism for cytokine-induced function and disease. Immunol Ser 57:169–271

    CAS  PubMed  Google Scholar 

  • Dvorak AM, Kissell S (1991) Granule changes of human skin mast cells characteristic of piecemeal degranulation and associated with recovery during wound healing in situ. J Leukoc Biol 49:197–210

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich P (1879) Beiträge zur Kenntnis der Granulierten Bindegewebszellen und der Eosinophilen Leukozyten. Arch Anat Physiol 3:166–169

    Google Scholar 

  • Elpek GO, Gelen T, Aksoy NH et al (2001) The prognostic relevance of angiogenesis and mast cells in squamous cell carcinoma of the oesophagus. J Clin Pathol 54:940–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang KC, Wolters PJ, Steinhoff M et al (1999) Mast cell expression of gelatinase A and B is regulated by kit ligand and TGF-Β. J Immunol 162:5528–5535

    CAS  PubMed  Google Scholar 

  • Fisher ER, Pasik SM, Rockette M et al (1989) Prognostic significance of eosinophils and mast cells in rectal cancer: finding from the national surgical adjuvant breast and bowel project (protocol R-01). Hum Pathol 20:159–163

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann A, Schlomm T, Kollermann J et al (2009) Immunological microenvironment in prostate cancer: high mast cell densities are associated with favourable tumor characteristics and good prognosis. Prostate 69:976–981

    Article  CAS  PubMed  Google Scholar 

  • Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934

    Google Scholar 

  • Fukushima N, Satoh T, Sano M et al (2001) Angiogenesis and mast cell in non hodgkin’s lymphoma; a strong correlation in angioimmunoblastic T-cell lymphoma. Leuk Lymphoma 42:709–720

    Article  CAS  PubMed  Google Scholar 

  • Glowacki J, Milltan JB (1982) Mast cells in hemangiomas and vascular malformation. Pediatrics 70:48–51

    CAS  PubMed  Google Scholar 

  • Gruber BL, Marchese MJ, Suzuki K et al (1989) Synovial procollagenase activation by human mast cell tryptase dependence upon matrix metalloproteinase 3 activation. J of Clin Invest 84:1657–1662

    Article  CAS  Google Scholar 

  • Gruber BL, Marchese MJ, Kaw R (1995) Angiogenic factors stimulate mast cell migration. Blood 86:2488–2493

    CAS  PubMed  Google Scholar 

  • Hagiwara K, Khaskhely NM, Uezato H et al (1999) Mast cell “densities” in vascular proliferation: a preliminary study of pyogenic granuloma, portwine stain, cavernous hemangioma, cherry angioma, kaposi’ sarcoma, and malignant hemangioendothelioma. J Dermatol 26:577–586

    Article  CAS  PubMed  Google Scholar 

  • Hartveit F (1981) Mast cells and metachromasia in human breast cancer: their occurrence, significance and consequence. A preliminary report. J Pathol 134:7–11

    Article  CAS  PubMed  Google Scholar 

  • Hartveit F, Thoresen S, Tangen M et al (1984) Mast cell changes and tumour dissemination in human breast carcinoma. Invasion Metastasis 4:146–155

    CAS  PubMed  Google Scholar 

  • Henderson WR, Chi EY, Yong EC et al (1981) Mast cell-mediated tumor cell cytotoxicity: role of the peroxidase system. J Exp Med 153:520–533

    Article  CAS  PubMed  Google Scholar 

  • Hopsu VK, Glenner GG (1963) A histochemical enzyme kinetic system applied to the trypsin-like amidase and esterase activity in human mast cells. J Cell Biol 17:503–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imada D, Shijubo N, Kojima H et al (2000) Mast cells correlate with angiogenesis and poor outcome in stage I lung adenocarcinoma. Eur Respir J 15:1087–1093

    Article  CAS  PubMed  Google Scholar 

  • Ishai-Michaeli R, Svahn CM, Chaiek-Shaul T et al (1992) Importance of size and sulphation of heparin in release of basic fibroblast growth factor from the vascular endothelium and extracellular matrix. Biochemistry 31:2080–2088

    Article  CAS  PubMed  Google Scholar 

  • Jakobson AM, Hahnenberger R (1991) Antiangiogenic effecto heparin and other sulphated glycosaminoglycans in the chick embryo chorioallantoic membrane. Pharmacol Toxicol 69:122–126

    Article  CAS  PubMed  Google Scholar 

  • Johansson A, Rudolfsson S, Hammarsten P et al (2010) Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. Am J Pathol 177:1031–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler DA, Langer RS, Pless NA et al (1976) Mast cells and tumor angiogenesis. Int J Cancer 18:703–709

    Article  CAS  PubMed  Google Scholar 

  • Kops SK, Van Loveren H, Rosenstein RW et al (1984) Mast cell activation and vascular alterations in immediate hypersensitivity-like reactions induced by a T-cell-derived antigen-binding factor. Lab Invest 50:421–434

    CAS  PubMed  Google Scholar 

  • Majewski S, Kaminski MJ, Szmurlo A et al (1984) Inhibition of tumour-induced angiogenesis by systemically administered protamine sulfate. Int J Cancer 33:831–833

    Article  CAS  PubMed  Google Scholar 

  • Marks RM, Roche WR, Czerniecki M et al (1986) Mast cell granules cause proliferation of human microvascular endothelial cells. Lab Invest 55:289–294

    CAS  PubMed  Google Scholar 

  • Melillo RM, Guarino V, Avilla E et al (2010) Mast cells have a protumorigenic role in human thyroid cancer. Oncogene 29:6203–6215

    Article  CAS  PubMed  Google Scholar 

  • Molica S, Vacca A, Crivellato E et al (2003) Tryptase-positive mast cells predict clinical outcome of patients with early B-cell chronic lymphocytic leukemia. Eur J Haematol 71:137–139

    Article  PubMed  Google Scholar 

  • Muramatsu M, Katada J, Hattori M et al (2000a) Chymase as a proangiogenic factor; a possible involvement of chymase-angiotensin-dependent pathway in the hamster sponge angiogenesis model. J Biol Chem 275:5545–5552

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu M, Katada J, Hattori M et al (2000b) Chymase mediates mast cell-induced angiogenesis in the hamster sponge granuloma. Eur J Pharmacol 402:181–191

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi H, Oguri K, Takenaga K et al (1994) Differential fibrotic stromal responses of host tissue to low- and high-metastatic cloned lewis lung carcinoma cells. Lab Invest 70:324–332

    CAS  PubMed  Google Scholar 

  • Nielsen HJ, Hansen U, Christensen IJ et al (1999) Independent prognostic value of eosinophil and mast cell infiltration in colorectale cancer tissue. J Pathol 189:487–495

    Article  CAS  PubMed  Google Scholar 

  • Nonomura N, Takayama H, Nishimura K et al (2007) Decreased number of mast cells infiltrating into needle biopsy specimens leads to a better prognosis of prostate cancer. Br J Cancer 97:952–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norrby K (1985) Evidence of mast cell histamine being mitogen in intact tissue. Agents Actions 16:287–290

    Article  CAS  PubMed  Google Scholar 

  • Norrby K (1993) Heparin and angiogenesis: a low molecular weight fraction inhibits and a high-molecular weight fraction stimulates angiogenesis systematically. Haemostasis 23:144–149

    Google Scholar 

  • Norrby K, Sorbo J (1992) Heparin enhances angiogenesis by a systemic mode of action. Int J Exp Pathol 73:1451–1455

    Google Scholar 

  • Norrby K, Woolley D (1993) Role of mast cells in mitogenesis and angiogenesis in normal tissue and tumour tissue. Adv Biosci 89:71–116

    CAS  Google Scholar 

  • Norrby K, Jakobsson A, Sorbo J (1986) Mast-cell-mediated angiogenesis: a novel experimental model using the rat mesentery. Virchows Arch B Cell Pathol Incl Mol Pathol 52:195–206

    Article  CAS  PubMed  Google Scholar 

  • Poole TJ, Zetter BR (1983) Mast cell chemotaxis to tumor derived factors. Cancer Res 43:5857–5862

    CAS  PubMed  Google Scholar 

  • Qu Z, Liebler JM, Powers MR et al (1995) Mast cells are a major source of basic fibroblast growth factor in chronic inflammation and cutaneous hemangioma. Am J Pathol 147:564–573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raiput AB, Turbin DA, Cheang MC et al (2008) Stromal mast cells in invasive breast cancer are a marker of favourable prognosis: a study of 4.444 cases. Breast Cancer Res Treat 107:249–257

    Article  Google Scholar 

  • Raza SL, Cornelius LA (2000) Matrix metalloproteinases: pro- and anti-angiogenic activities. J Investig Dermatol Symp Proc 5:47–54

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Roncali L, Nico B et al (1987) Effects of exogenous heparin on the vasculogenesis of the chorioallantoic membrane. Acta Anat (Basel) 130:257–263

    Article  CAS  Google Scholar 

  • Ribatti D, Contino R, Tursi A (1988) Do mast cells intervene in the vasoproliferative processes of the rheumatoid synovitis? J Submicrosc Cytol Pathol 20:635–637

    CAS  PubMed  Google Scholar 

  • Ribatti D, Nico B, Vacca A et al (1998) Do mast cells help to induce angiogenesis in B-cell non-hodgkin’s lymphomas? Br J Cancer 77:1900–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribatti D, Vacca A, Nico B et al. (1996) Angiogenesis spectrum in the stroma of B cell non Hodgkin’s lymphoma. An immunohistochemical and ultrastructural study. Eur J Haematol 56:45–53

    Article  Google Scholar 

  • Ribatti D, Vacca A, Nico B et al (1999) Bone marrow angiogenesis and mast cell density increase simultaneously with progression of human multiple myeloma. Br J Cancer 79:451–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribatti D, Vacca A, Marzullo A et al (2000) Angiogenesis and mast cell density with tryptase activity increase simultaneously with pathological progression in B-cell non-hodgkin’s lymphomas. Int J Cancer 85:171–175

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Crivellato E, Candussio L et al (2001a) Mast cells and their secretory granules are angiogenic in the chick embryo chorioallantoic membrane. Clin Exp Allergy 31:602–608

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Vacca A, Nico B et al (2001b) The role of mast cells in tumour angiogenesis. Brit J Haematol 115:514–521

    Article  CAS  Google Scholar 

  • Ribatti D, Polimeno G, Vacca A et al (2002) Correlation of bone marrow angiogenesis and mast cells with tryptase activity in myelodysplastic syndromes. Leukemia 16:1680–1684

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Vacca A, Ria R et al (2003a) Neovascularization, expression of fibroblast growth factor-2, and mast cell with tryptase activity increase simultaneously with pathological progression in human malignant melanoma. Eur J Cancer 39:666–765

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Molica S, Vacca A et al (2003b) Tryptase-positive mast cells correlate positively with bone marrow angiogenesis in B-cell chronic lymphocytic leukemia. Leukemia 17:1428–1430

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Nico B, Crivellato E et al (2007a) Macrophages and tumor angiogenesis. Leukemia 21:2085–2089

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Finato N, Crivellato E et al (2007b) Angiogenesis and mast cells in human breast cancer sentinel lymph node with and without micrometastasis. Histopathology 51:837–842

    Article  CAS  PubMed  Google Scholar 

  • Roche WR (1985) Mast cells and tumor angiogenesis: the tumor-mediated release of an endothelial growth factor from mast cells. Int J Cancer 36:721–728

    Article  CAS  PubMed  Google Scholar 

  • Romanoff AL (1960) The avian embryo: structural and functional development. MacMillan, New York

    Google Scholar 

  • Sawatsubashi M, Yamada T, Fukushima N et al (2000) Association of vascular endothelial growth factor and mast cells with angiogenesis in laryngeal squamous cell carcinoma. Virchows Arch 436:243–248

    Article  CAS  PubMed  Google Scholar 

  • Sayama S, Iozzo RV, Lazarus GS et al (1987) Human skin chymotrypsin-like proteinase chymase. Subcellular localization to mast cell granules and interaction with heparin and other glycosaminoglycans. J Biol Chem 262:6808–6815

    CAS  PubMed  Google Scholar 

  • Schwartz LB, Lewis RA, Austen KF (1981) Tryptase from human pulmonary mast cells. Purification and Characterization. J Biol Chem 256:11939–11943

    CAS  PubMed  Google Scholar 

  • Sorbo J, Jakobson A, Norrby K (1994) Mast cell histamine is angiogenic through receptors for histamine 1 and histamine 2. Int J Exp Pathol 75:43–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Starkey JR, Crowle PK, Taubenberger S (1988) Mast-cell-deficient W/Wv mice exhibit a decreased rate of tumor angiogenesis. Int J Cancer 42:48–52

    Article  CAS  PubMed  Google Scholar 

  • Taipale J, Lohi J, Saarinen J et al (1995) Human mast cell chymase and leukocyte elastase release latent transforming growth factor beta-1 from the extracellular matrix of cultured human epithelial and endothelial cells. J Biol Chem 270:4689–4696

    Article  CAS  PubMed  Google Scholar 

  • Takanami I, Takeuchi K, Naruke M (2000) Mast cell density is associated with angiogenesis and poor prognosis in pulmonary adenocarcinoma. Cancer 88:2686–2692

    Article  CAS  PubMed  Google Scholar 

  • Tan SY, Fan Y, Luo HS et al (2005) Prognostic significance of cell infiltrations of immunosurveillance in colorectal cancer. World J Gastroenterol 11:1210–1214

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor S, Folkman J (1982) Protamine is an inhibitor of angiogenesis. Nature 297:307–312

    Article  CAS  PubMed  Google Scholar 

  • Thompson WD, Brown FI (1987) Quantitation of histamine-induced angiogenesis in the chick chorioallantoic membrane: mode of action of histamine is indirect. Int J Microcirc Clin Exp 6:343–357

    CAS  PubMed  Google Scholar 

  • Thompson WD, Campbell R, Evans T (1995) Fibrin degradation and angiogenesis: quantitative analysis of the angiogenic response in the chick chorioallantoic membrane. J Pathol 145:27–37

    Article  Google Scholar 

  • Thorton SC, Mueller SM, Levine EM (1983) Human endothelial cells: use of heparin in cloning and long term cultivation. Science 222:623–625

    Article  Google Scholar 

  • Tomita M, Matsuzaki Y, Onitsuka T (1999) Correlation between mast cells and survival rates in patients with pulmonary adenocarcinoma. Lung Cancer 26:103–109

    Article  CAS  PubMed  Google Scholar 

  • Tomita M, Matsuzaki Y, Onitsuka T (2000) Effect of mast cells on tumor angiogenesis in lung cancer. Ann Thorac Surg 69:1686–1690

    Article  CAS  PubMed  Google Scholar 

  • Toth T, Toth-Jakatics R, Jimi S et al (2000) Cutaneous malignant melanoma: correlation between neovascularization and peritumor accumulation of mast cells overexpressing vascular endothelial growth factor. Hum Pathol 31:955–960

    Article  Google Scholar 

  • Vacca A, Ribatti D, Roncali L et al (1994) Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 87:503–508

    Article  CAS  PubMed  Google Scholar 

  • Vacca A, Ribatti D, Presta M et al (1999) Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 93:3064–3073

    CAS  PubMed  Google Scholar 

  • Vincent AJ, Zhang J, Ostor A et al (2000) Matrix metalloproteinase-1 and-3 and mast cells are present in the endometrium of women using progestin-only contraceptives. Hum Reprod 15:123–130

    Article  CAS  PubMed  Google Scholar 

  • Vlodavski J, Elkin M, Rappo A et al (2000) Mammalian heparanase as a mediator of tumor metastasia and angiogenesis. Isr Med Assoc J 2:37–45

    Google Scholar 

  • Vlodavsky J, Eldor A, Haimovitz-Friedman A et al (1992) Expression of haparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis 12:112–127

    CAS  PubMed  Google Scholar 

  • Welsh TJ, Green RH, Richardson D et al (2005) Macrophage and mast cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol 23:8959–8967

    Article  PubMed  Google Scholar 

  • Westphal E (1891) Uber mastzellen. Hirschwald Press, Berlin

    Google Scholar 

  • Wilks JW, Scott PS, Urla LK et al (1991) Inhibition of angiogenesis with combination treatments of angiostatic steroids and suramin. Int J Radiat Biol 60:73–77

    Article  CAS  PubMed  Google Scholar 

  • Wintroub BU, Kaempfer CE, Schechter NM et al (1986) A human lung mast cell chymotrypsin-like enzyme. Identification and partial characterization. J Clin Invest 77:196–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang M, Gu Y, Zhao F et al (2010) Mast cell tryptase promotes breast cancer migration and invasion. Oncol Rep 23:615–619

    CAS  PubMed  Google Scholar 

  • Yano H, Kinuta M, Tateishi H et al (1999) Mast cell infiltration around gastric cancer cells correlates with tumor angiogenesis and metastasis. Gastric Cancer 2:26–32

    Article  PubMed  Google Scholar 

  • Yayon A, Klagsbrun M, Esko JD et al (1991) Cell surface heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848

    Article  CAS  PubMed  Google Scholar 

  • Zudaire E, Martinez A, Garayoa M et al (2006) Adrenomedullin is a cross-talk molecule that regulatestumor and mast cell function during human carcinogenesis. Am J Pathol 168:280–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Ribatti .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ribatti, D. (2019). Mast Cells in Tumor Angiogenesis and Lymphangiogenesis. In: The Mast Cell . Springer, Cham. https://doi.org/10.1007/978-3-030-24190-2_11

Download citation

Publish with us

Policies and ethics