Skip to main content

Renal Failure After Cardiac Surgery

  • Chapter
  • First Online:
Cardiac Surgery

Abstract

Acute kidney injury (AKI) is the most common clinically important complication after cardiac surgery. In critically ill patients, cardiac surgery is the second most common cause of AKI after sepsis. The development of acute kidney injury is independently associated with significant short- and long-term morbidity and mortality. In this chapter, we explore the definition of cardiac surgery associated acute kidney injury (CSA-AKI), and identify its risk factors. We discuss current theories of the pathophysiology of CSA-AKI and describe its clinical course. Furthermore, we introduce diagnostic tools with particular reference to novel biomarkers of AKI and their potential utility. We also analyze currently applied interventions aimed at attenuating AKI in patients undergoing cardiac surgery. Finally, we explore issues in the use of renal replacement therapy, its timing and its preferred modalities in patients with CSA-AKI, and discuss the prognosis of CSA-AKI in terms of patient survival and kidney recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoste EA, Cruz DN, Davenport A, et al. The epidemiology of cardiac surgery-associated acute kidney injury. Int J Artif Organs. 2008;31:158–65.

    Article  CAS  PubMed  Google Scholar 

  2. Lassnigg A, Schmidlin D, Mouhieddine M, et al. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol. 2004;15:1597–605.

    Article  CAS  PubMed  Google Scholar 

  3. Wijeysundera DN, Karkouti K, Dupuis JY, et al. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. JAMA. 2007;297:1801–9.

    Article  CAS  PubMed  Google Scholar 

  4. Mehta RH, Grab JD, O’Brien SM, et al. Society of Thoracic Surgeons National Cardiac Surgery Database Investigators. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation. 2006;114:2208–16.

    Article  PubMed  Google Scholar 

  5. Thakar CV, Arrigain S, Worley S, Yared JP, Paganini EP. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol. 2005;16:162–8.

    Article  PubMed  Google Scholar 

  6. Thakar CV, Worley S, Arrigain S, Yared JP, Paganini EP. Influence of renal dysfunction on mortality after cardiac surgery: modifying effect of preoperative renal function. Kidney Int. 2005;67:1112–9.

    Article  PubMed  Google Scholar 

  7. Khawaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120:c179–84.

    Google Scholar 

  8. Luo X, Jiang L, Du B, Wen Y, Wang M, Xi X. Beijing Acute Kidney Injury Trial (BAKIT) workgroup. A comparison of different diagnostic criteria of acute kidney injury in critically ill patients. Crit Care. 2014;18:R144.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bellomo R, Auriemma S, Fabbri A, et al. The pathophysiology of cardiac surgery-associated acute kidney injury (CSA-AKI). Int J Artif Organs. 2008;31:166–78.

    Article  CAS  PubMed  Google Scholar 

  10. Perez-Valdivieso JR, Monedero P, Vives M, Garcia-Fernandez N, Bes-Rastrollo M; GEDRCC (Grupo Español de Disfunción Renal en Cirugía Cardiaca). Cardiac-surgery associated acute kidney injury requiring renal replacement therapy. A Spanish retrospective case-cohort study. BMC Nephrol. 2009;10:27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Tuttle KR, Worrall NK, Dahlstrom LR, Nandagopal R, Kausz AT, Davis CL. Predictors of ARF after cardiac surgical procedures. Am J Kidney Dis. 2003;41:76–83.

    Article  PubMed  Google Scholar 

  12. Demirjian S, Schold JD, Navia J, et al. Predictive models for acute kidney injury following cardiac surgery. Am J Kidney Dis. 2012;59:382–9.

    Article  PubMed  Google Scholar 

  13. Echarri G, Duque-Sosa P, Callejas R, et al. Renal Dysfunction in Cardiac Surgery Spanish Group (GEDRCC2). External validation of predictive models for acute kidney injury following cardiac surgery: a prospective multicentre cohort study. Eur J Anaesthesiol. 2017;34:81–8.

    Article  CAS  PubMed  Google Scholar 

  14. Petricevic M, Biocina B, Konosic S, Burcar I. Preoperative aspirin use and outcomes in cardiac surgery patients. Ann Surg. 2012;255:399–404.

    Article  Google Scholar 

  15. Yao L, Young N, Liu H, et al. Evidence for preoperative aspirin improving major outcomes in patients with chronic kidney disease undergoing cardiac surgery: a cohort study. Ann Surg. 2015;261:207–12.

    Article  PubMed  Google Scholar 

  16. Billings FT IV, Brown NJ. Statins to reduce acute kidney injury after cardiac surgery--reply. JAMA. 2016;316:349–50.

    Article  PubMed  Google Scholar 

  17. Zheng Z, Jayaram R, Jiang L, et al. Perioperative rosuvastatin in cardiac surgery. N Engl J Med. 2016;374:1744–53.

    Article  CAS  PubMed  Google Scholar 

  18. Molnar AO, Parikh CR, Coca SG, et al. TRIBE-AKI Consortium. Association between preoperative statin use and acute kidney injury biomarkers in cardiac surgical procedures. Ann Thorac Surg. 2014;97:2081–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Karkouti K, Wijeysundera DN, Yau TM, et al. Acute kidney injury after cardiac surgery: focus on modifiable risk factors. Circulation. 2009;119:495–502.

    Article  PubMed  Google Scholar 

  20. Society of Thoracic Surgeons Blood Conservation Guideline Task Force, Ferraris VA, Brown JR, Despotis GJ, et al. 2011 update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg. 2011;91:944–82.

    Article  Google Scholar 

  21. Mazer CD, Whitlock RP, Fergusson DA, et al. Restrictive or liberal red-cell transfusion for cardiac surgery. N Engl J Med. 2017;377:2133–44.

    Article  PubMed  Google Scholar 

  22. Gross I, Seifert B, Hofmann A, Spahn DR. Patient blood management in cardiac surgery results in fewer transfusions and better outcome. Transfusion. 2015;55:1075–81.

    Article  CAS  PubMed  Google Scholar 

  23. Asteriou C, Antonitsis P, Argiriadou H, et al. Minimal extracorporeal circulation reduces the incidence of postoperative major adverse events after elective coronary artery bypass grafting in high-risk patients. A single-institutional prospective randomized study. Perfusion. 2013;28:350–6.

    Article  CAS  PubMed  Google Scholar 

  24. Anastasiadis K, Antonitsis P, Haidich AB, Argiriadou H, Deliopoulos A, Papakonstantinou C. Use of minimal extracorporeal circulation improves outcome after heart surgery; a systematic review and meta-analysis of randomized controlled trials. Int J Cardiol. 2013;164:158–69.

    Article  PubMed  Google Scholar 

  25. Matata BM, Scawn N, Morgan M, et al. A single-center randomized trial of intraoperative zero-balanced ultrafiltration during cardiopulmonary bypass for patients with impaired kidney function undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2015;29:1236–47.

    Article  PubMed  Google Scholar 

  26. Magruder JT, Crawford TC, Harness HL, et al. A pilot goal-directed perfusion initiative is associated with less acute kidney injury after cardiac surgery. J Thorac Cardiovasc Surg. 2017;153:118–125 e1.

    Article  PubMed  Google Scholar 

  27. Lamy A, Devereaux PJ, Prabhakaran D, et al. CORONARY Investigators. Effects of off-pump and on-pump coronary-artery bypass grafting at 1 year. N Engl J Med. 2013;368:1179–88.

    Article  CAS  PubMed  Google Scholar 

  28. Lamy A, Devereaux PJ, Prabhakaran D, et al. CORONARY Investigators. Five-year outcomes after off-pump or on-pump coronary-artery bypass grafting. N Engl J Med. 2016;375:2359–68.

    Article  PubMed  Google Scholar 

  29. Cai J, Xu R, Yu X, Fang Y, Ding X. Volatile anesthetics in preventing acute kidney injury after cardiac surgery: a systematic review and meta-analysis. J Thorac Cardiovasc Surg. 2014;148:3127–36.

    Article  CAS  PubMed  Google Scholar 

  30. Zarbock A, Schmidt C, Van Aken H, et al. RenalRIPC Investigators. Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: a randomized clinical trial. JAMA. 2015;313:2133–41.

    Article  CAS  PubMed  Google Scholar 

  31. Zarbock A, Kellum JA, Van Aken H, et al. Long-term effects of remote ischemic preconditioning on kidney function in high-risk cardiac surgery patients: follow-up results from the renalRIP trial. Anesthesiology. 2017;126:787–98.

    Article  PubMed  Google Scholar 

  32. McIlroy D, Murphy D, Kasza J, Bhatia D, Wutzlhofer L, Marasco S. Effects of restricting perioperative use of intravenous chloride on kidney injury in patients undergoing cardiac surgery: the LICRA pragmatic controlled clinical trial. Intensive Care Med. 2017;43:795–806.

    Article  CAS  PubMed  Google Scholar 

  33. Bove T, Zangrillo A, Guarracino F, et al. Effect of fenoldopam on use of renal replacement therapy among patients with acute kidney injury after cardiac surgery: a randomized clinical trial. JAMA. 2014;312:2244–53.

    Article  PubMed  CAS  Google Scholar 

  34. Patel NN, Angelini GD. Pharmacological strategies for the prevention of acute kidney injury following cardiac surgery: an overview of systematic reviews. Curr Pharm Des. 2014;20:5484–8.

    Article  CAS  PubMed  Google Scholar 

  35. Haase M, Haase-Fielitz A, Bellomo R, et al. Sodium bicarbonate to prevent increases in serum creatinine after cardiac surgery: a pilot double-blind, randomized controlled trial. Crit Care Med. 2009;37:39–47.

    Article  CAS  PubMed  Google Scholar 

  36. McGuinness SP, Parke RL, Bellomo R, Van Haren FM, Bailey M. Sodium bicarbonate infusion to reduce cardiac surgery-associated acute kidney injury: a phase II multicenter double-blind randomized controlled trial. Crit Care Med. 2013;41:1599–607.

    Article  CAS  PubMed  Google Scholar 

  37. Bailey M, McGuinness S, Haase M, et al. Sodium bicarbonate and renal function after cardiac surgery: a prospectively planned individual patient meta-analysis. Anesthesiology. 2015;122:294–306.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou C, Gong J, Chen D, Wang W, Liu M, Liu B. Levosimendan for prevention of acute kidney injury after cardiac surgery: a meta-analysis of randomized controlled trials. Am J Kidney Dis. 2016;67:408–16.

    Article  CAS  PubMed  Google Scholar 

  39. Tena MÁ, Urso S, González JM, et al. Levosimendan versus placebo in cardiac surgery: a systematic review and meta-analysis. Interact Cardiovasc Thorac Surg. 2018;27:677–85.

    Article  PubMed  Google Scholar 

  40. Landoni G, Lomivorotov VV, Alvaro G, et al. CHEETAH Study Group. Levosimendan for hemodynamic support after cardiac surgery. N Engl J Med. 2017;376:2021–31.

    Article  CAS  PubMed  Google Scholar 

  41. Mehta RH, Leimberger JD, van Diepen S, et al. LEVO-CTS Investigators. Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery. N Engl J Med. 2017;376:2032–42.

    Article  CAS  PubMed  Google Scholar 

  42. Guarracino F, Heringlake M, Cholley B, et al. Use of levosimendan in cardiac surgery: an update after the LEVO-CTS, CHEETAH, and LICORN trials in the light of clinical practice. J Cardiovasc Pharmacol. 2018;71:1–9.

    Article  CAS  PubMed  Google Scholar 

  43. Cho JS, Shim JK, Soh S, Kim MK, Kwak YL. Perioperative dexmedetomidine reduces the incidence and severity of acute kidney injury following valvular heart surgery. Kidney Int. 2016;89:693–700.

    Article  CAS  PubMed  Google Scholar 

  44. Hajjar LA, Vincent JL, Barbosa Gomes Galas FR, et al. Vasopressin versus norepinephrine in patients with vasoplegic shock after cardiac surgery: the VANCS randomized controlled trial. Anesthesiology. 2017;126:85–93.

    Article  CAS  PubMed  Google Scholar 

  45. Meersch M, Schmidt C, Hoffmeier A, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43:1551–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu Y, Davari-Farid S, Arora P, Porhomayon J, Nader ND. Early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury after cardiac surgery: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2014;28:557–63.

    Article  PubMed  Google Scholar 

  47. Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA. 2016;315:2190–9.

    Article  CAS  PubMed  Google Scholar 

  48. Wang Y, Bellomo R. Cardiac surgery-associated acute kidney injury: risk factors, pathophysiology and treatment. Nat Rev Nephrol. 2017;13:697–711.

    Article  PubMed  Google Scholar 

  49. Samra M, Abcar AC. False estimates of elevated creatinine. Perm J. 2012;16:51–2.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ronco C, Kellum JA, Haase M. Subclinical AKI is still AKI. Crit Care. 2012;16:313.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Vives .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vives, M., Bustamante-Munguira, J. (2020). Renal Failure After Cardiac Surgery. In: Raja, S. (eds) Cardiac Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-24174-2_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24174-2_82

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24173-5

  • Online ISBN: 978-3-030-24174-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics