Skip to main content

Bioavailability of Total Petroleum Hydrocarbons

  • Chapter
  • First Online:
Total Petroleum Hydrocarbons

Abstract

There is a fundamental need to understand and possibly quantify the bioavailable fraction of total petroleum hydrocarbons (TPHs) present in the environment. Bioavailability can be defined as the amount of a pollutant that can be readily taken up by microorganisms for biodegradation. The bioavailability of TPHs governs the rate of biodegradation or bioremediation. There are several constraints including low aqueous solubility, sorption, and micropore exclusion that limit the bioavailability of TPHs to microorganisms. Surfactants enhance TPHs bioavailability and thereby increase the rate of biodegradation. To quantify the bioavailable fractions, many techniques have been employed ranging from solvent-based extractions to the use of biota. Chemical techniques used to determine TPHs bioavailability include mild organic solvent extraction, supercritical fluid extraction with pure CO2, persulfate oxidation, cyclodextrin extraction, solid-phase extraction using Tenax, and surfactant extraction. The biological assays developed for assessing the bioavailability of TPHs in the environment include the respirometry, bioluminescence assay, quantitation of mRNA, earthworm toxicity test, human dermal uptake test, animal oral uptake test, microtox toxicity test, springtail toxicity test, Ames assay, seed germination/root elongation test, algal growth inhibition test, and Daphnia immobilization test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adedigba BM, Semple KT (2015) Bioavailability of persistent organic pollutants in soils: concept, analytical tools, and application in the risk assessment. Comp Anal Chem 67:493–512

    Article  CAS  Google Scholar 

  • Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265

    Article  CAS  Google Scholar 

  • Banks MK, Schultz KE (2005) Comparison of plants for germination toxicity tests in petroleum-contaminated soils. Water Air Soil Pollut 167:211–219

    Article  CAS  Google Scholar 

  • Bori J, Vallès B, Ortega L, Riva MC (2016) Bioassays with terrestrial and aquatic species as monitoring tools of hydrocarbon degradation. Environ Sci Pollut Res 23:18694–18703

    Article  CAS  Google Scholar 

  • Brassington KJ, Hough RL, Paton GI, Semple KT, Risdon GC, Crossley J, Pollard SJ (2007) Weathered hydrocarbon wastes: a risk management primer. Crit Rev Environ Sci Technol 37:199–232

    Article  CAS  Google Scholar 

  • Cachada A, Pereira R, da Silva EF, Duarte AC (2014) The prediction of PAHs bioavailability in soils using chemical methods: state of the art and future challenges. Sci Total Environ 472:463–480

    Article  CAS  Google Scholar 

  • Chaineau CH, Yepremian C, Vidalie JF, Ducreux J, Ballerini D (2003) Bioremediation of a crude oil-polluted soil: Biodegradation, leaching and toxicity assessments. Water Air Soil Pollut 144:419–440

    Article  CAS  Google Scholar 

  • Charrasse B, Hennebert P, Doumenq P (2018) Mobility of PAHs, PCBs and TPHs from fresh and aged dredged sediments. Waste Biomass Valoriz 9:1231–1241

    Article  CAS  Google Scholar 

  • Cheng M, Zeng G, Huang D, Yang C, Lai C, Zhang C, Liu Y (2018) Tween 80 surfactant-enhanced bioremediation: toward a solution to the soil contamination by hydrophobic organic compounds. Crit Rev Biotechnol 38:17–30

    Article  CAS  Google Scholar 

  • Cho YM, Ghosh U, Kennedy AJ, Grossman A, Ray G, Tomaszewski JE, Smithenry DW, Bridges TS, Luthy RG (2009) Field application of activated carbon amendment for in situ stabilisation of polychlorinated biphenyls in marine sediment. Environ Sci Technol 43:3815–3823

    Article  CAS  Google Scholar 

  • Cornelissen G, Rigterink H, Ferdinandy MM, van Noort PC (1998) Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation. Environ Sci Technol 32:966–970

    Article  CAS  Google Scholar 

  • Cui X, Mayer P, Gan J (2013) Methods to assess bioavailability of hydrophobic organic contaminants: principles, operations, and limitations. Environ Pollut 172:223–234

    Article  CAS  Google Scholar 

  • Cuypers C, Clemens R, Grotenhuis T, Rulkens W (2001) Prediction of petroleum hydrocarbon bioavailability in contaminated soils and sediments. Soil Sediment Contam 10:459–482

    Article  CAS  Google Scholar 

  • Cuypers C, Pancras T, Grotenhuis T, Rulkens W (2002) The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-β-cyclodextrin and Triton X-100 extraction techniques. Chemosphere 46:1235–1245

    Article  CAS  Google Scholar 

  • Dawson JJ, Maciel H, Paton GI, Semple KT (2004) Analysis of organic pollutants in environmental samples. In: Keith AS, Malcolm SC (eds) Soil and environmental analysis, 3rd edn. Marcel Dekker Inc, New York, p 455

    Google Scholar 

  • Dean JR, Cresswell SL (2002) Extraction techniques for solid samples. Comp Anal Chem 37:559–586

    Article  CAS  Google Scholar 

  • Dorn PB, Vipond TE, Salanitro JP, Wisniewski HL (1998) Assessment of the acute toxicity of crude oils in soils using earthworms, Microtox®, and plants. Chemosphere 37:845–860

    Article  CAS  Google Scholar 

  • Duan L, Naidu R, Thavamani P, Meaklim J, Megharaj M (2015) Managing long-term polycyclic aromatic hydrocarbon contaminated soils: a risk-based approach. Environ Sci Pollut Res 22:8927–8941

    Article  CAS  Google Scholar 

  • Ehlers LJ, Luthy RG (2003) Peer reviewed: contaminant bioavailability in soil and sediment. Environ Sci Technol 37:295A–302A

    Article  CAS  Google Scholar 

  • Haeseler F, Blanchet D, Druelle V, Werner P, Vandecasteele JP (1999) Ecotoxicological assessment of soils of former manufactured gas plant sites: bioremediation potential and pollutant mobility. Environ Sci Technol 33:4379–4384

    Article  CAS  Google Scholar 

  • Harmsen J (2007) Measuring bioavailability: from a scientific approach to standard methods. J Environ Qual 36:1420–1428

    Article  CAS  Google Scholar 

  • Hartnik T, Jensen J, Hermens JL (2008) Nonexhaustive β-cyclodextrin extraction as a chemical tool to estimate bioavailability of hydrophobic pesticides for earthworms. Environ Sci Technol 42:8419–8425

    Article  CAS  Google Scholar 

  • Hentati O, Lachhab R, Ayadi M, Ksibi M (2013) Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. Environ Monit Assess 185:2989–2998

    Article  CAS  Google Scholar 

  • Herrchen M (1997) Bioavailability as a key property in terrestrial ecotoxicity assessment and evaluation. He Frauenhofer-Institute for Environmental Chemistry and Ecotoxicology, Schmallenberg

    Google Scholar 

  • Huckins JN, Tubergen MW, Manuweera GK (1990) Semipermeable membrane devices containing model lipid: a new approach to monitoring bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere 20:533–552

    Article  CAS  Google Scholar 

  • Jiang B, Li G, Xing Y, Zhang D, Jia J, Cui Z, Tang H (2017) A whole-cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples. Chemosphere 184:384–392

    Article  CAS  Google Scholar 

  • Juhasz AL, Waller N, Stewart R (2005) Predicting the efficacy of polycyclic aromatic hydrocarbon bioremediation in creosote-contaminated soil using bioavailability assays. Biorem J 9:99–114

    Article  CAS  Google Scholar 

  • Kelsey JW, Kottler BD, Alexander M (1996) Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ Sci Technol 31:214–217

    Article  Google Scholar 

  • Khan MAI, Biswas B, Smith E, Naidu R, Megharaj M (2018) Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil – a review. Chemosphere 212:755–767

    Article  CAS  Google Scholar 

  • Kuppusamy S, Venkateswarlu K, Megharaj M, Mayilswami S, Lee YB (2017) Risk-based remediation of polluted sites: a critical perspective. Chemosphere 186:607–615

    Article  CAS  Google Scholar 

  • Lal V, Peng C, Ng J (2015) A review of non-exhaustive chemical and bioavailability methods for the assessment of polycyclic aromatic hydrocarbons in soil. Environ Technol Innov 4:159–167

    Article  Google Scholar 

  • Liste HH, Alexander M (2002) Butanol extraction to predict bioavailability of PAHs in soil. Chemosphere 46:1011–1017

    Article  CAS  Google Scholar 

  • Liu H, Wang H, Chen X, Liu N, Bao S (2014) Biosurfactant-producing strains in enhancing solubilization and biodegradation of petroleum hydrocarbons in groundwater. Environ Monit Assess 186:4581–4589

    Article  CAS  Google Scholar 

  • Loehr RC, McMillen SJ, Webster MT (2001) Predictions of biotreatability and actual results: soils with petroleum hydrocarbons. Pract Period Hazard Toxic Radioact Waste Manage 5:78–87

    Article  CAS  Google Scholar 

  • Maier RM (2000) Bioavailability and its importance to bioremediation. In: Valdes JJ (ed) Bioremediation. Springer, Dordrecht, pp 59–78. https://doi.org/10.1007/978-94-015-9425-7_4

    Chapter  Google Scholar 

  • Maletić S, Dalmacija B, Rončevic S (2013) Petroleum hydrocarbon biodegradability in soil–implications for bioremediation. In: Vladimir K, Anton K (eds) Hydrocarbon. IntechOpen, Croatia

    Google Scholar 

  • Megharaj M, Naidu R (2008) Bioavailability and toxicity of contaminant mixtures to soil biota. Dev Soil Sci 32:233–243

    CAS  Google Scholar 

  • Megharaj M, Singleton I, McClure NC, Naidu R (2000) Influence of petroleum hydrocarbon contamination on microalgae and microbial activities in a long-term contaminated soil. Arch Environ Contam Toxicol 38:439–445

    Article  CAS  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    Article  CAS  Google Scholar 

  • Naidu R, Semple KT, Megharaj M, Juhasz AL, Bolan NS, Gupta SK, Clothier BE, Schulin R (2008) Bioavailability: definition, assessment and implications for risk assessment. In: Hartemink AE, AB MB, Naidu R (eds) Chemical bioavailability in terrestrial environment, vol 32, 32nd edn. Elsevier, London, pp 39–51. (Developments in Soil Science)

    Chapter  Google Scholar 

  • Ortega-Calvo JJ, Ball WP, Schulin R, Semple KT, Wick LY (2007) Bioavailability of pollutants and soil remediation. J Environ Qual 36:383–1384

    Article  Google Scholar 

  • Plattenberg RH (2007) Environmental pollution: new research. Nova Publishers, New York, pp 235–245

    Google Scholar 

  • Płaza G, Nałęcz-Jawecki G, Ulfig K, Brigmon RL (2005) The application of bioassays as indicators of petroleum-contaminated soil remediation. Chemosphere 59:289–296

    Article  Google Scholar 

  • Ramadass K, Megharaj M, Venkateswarlu K, Naidu R (2015) Ecological implications of motor oil pollution: earthworm survival and soil health. Soil Biol Biochem 85:72–81

    Article  CAS  Google Scholar 

  • Ramadass K, Megharaj M, Venkateswarlu K, Naidu R (2018) Bioavailability of weathered hydrocarbons in engine oil-contaminated soil: impact of bioaugmentation mediated by Pseudomonas spp. on bioremediation. Sci Total Environ 636:968–974

    Article  CAS  Google Scholar 

  • Ramos EU, Meijer SN, Vaes WH, Verhaar HJ, Hermens JL (1998) Using solid-phase microextraction to determine partition coefficients to humic acids and bioavailable concentrations of hydrophobic chemicals. Environ Sci Technol 32:3430–3435

    Article  CAS  Google Scholar 

  • Reid BJ, Stokes JD, Jones KC, Semple KT (2000) Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environ Sci Technol 34:3174–3179

    Article  CAS  Google Scholar 

  • Reinecke AJ, van Wyk M, Reinecke SA (2016) The influence of soil characteristics on the toxicity of oil refinery waste for the springtail Folsomia candida (Collembola). Bull Environ Contam Toxicol 96:804–809

    Article  CAS  Google Scholar 

  • Richardson SD, Lebron BL, Miller CT, Aitken MD (2010) Recovery of phenanthrene-degrading bacteria after simulated in situ persulfate oxidation in contaminated soil. Environ Sci Technol 45:719–725

    Article  Google Scholar 

  • Rodriguez-Ruiz A, Asensio V, Zaldibar B, Soto M, Marigómez I (2014) Toxicity assessment through multiple endpoint bioassays in soils posing environmental risk according to regulatory screening values. Environ Sci Pollut Res 21:9689–9708

    Article  CAS  Google Scholar 

  • Sabaté J, Viñas M, Solanas AM (2006) Bioavailability assessment and environmental fate of polycyclic aromatic hydrocarbons in biostimulated creosote-contaminated soil. Chemosphere 63:1648–1659

    Article  Google Scholar 

  • Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818

    Article  CAS  Google Scholar 

  • Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Peer reviewed: defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38:228A–231A

    Article  CAS  Google Scholar 

  • Simpson SL, Burston VL, Jolley DF, Chau K (2006) Application of surrogate methods for assessing the bioavailability of PAHs in sediments to a sediment ingesting bivalve. Chemosphere 65:2401–2410

    Article  CAS  Google Scholar 

  • Souza TS, Christofoletti CA, Fontanetti CS (2011) Chapter 10, Ecotoxicological assays applied in soils contaminated by petroleum hydrocarbons. In: Julia EV (ed) Ecotoxicology around the globe. Nova Science Publishers, New York, pp 247–261

    Google Scholar 

  • Spacie A, Hamelink JL (1995) Bioaccumulation. In: Gary MR (ed) Fundamentals of aquatic toxicology, effects, environmental fate and risk assessment, 2nd edn. TCRC Press, Washington

    Google Scholar 

  • Stokes JD, Paton GI, Semple KT (2005) Behaviour and assessment of bioavailability of organic contaminants in soil: relevance for risk assessment and remediation. Soil Use Manage 21:475–486

    Article  Google Scholar 

  • Stroo HF, Jensen R, Loehr RC, Nakles DV, Fairbrother A, Liban CB (2000) Environmentally acceptable endpoints for PAHs at a manufactured gas plant site. Environ Sci Technol 34:3831–3836

    Article  CAS  Google Scholar 

  • Szolar OH, Rost H, Hirmann D, Hasinger M, Braun R, Loibner AP (2004) Sequential supercritical fluid extraction (SSFE) for estimating the availability of high molecular weight polycyclic aromatic hydrocarbons in historically polluted soils. J Environ Qual 33:80–88

    Article  CAS  Google Scholar 

  • Tang J, Wang M, Wang F, Sun Q, Zhou Q (2011) Eco-toxicity of petroleum hydrocarbon contaminated soil. J Environ Sci 23:845–851

    Article  CAS  Google Scholar 

  • Tecon R, Beggah S, Czechowska K, Sentchilo V, Chronopoulou PM, McGenity TJ, van der Meer JR (2009) Development of a multistrain bacterial bioreporter platform for the monitoring of hydrocarbon contaminants in marine environments. Environ Sci Technol 44:1049–1055

    Article  Google Scholar 

  • ten Hulscher TE, Postma J, den Besten PJ, Stroomberg GJ, Belfroid A, Wegener J, van Noort PC (2003) Tenax extraction mimics benthic and terrestrial bioavailability of organic compounds. Environ Toxicol Chem 22:2258–2265

    Article  Google Scholar 

  • Vales JJ (2000) Bioremediation. Kluwer Academic Publishers, Dordrecht, pp 59–78

    Book  Google Scholar 

  • Van Leeuwen CJ, Hermens JLM (1995) Ecotoxicological effects. In: Risk assessment of chemicals: an introduction. Springer, Dordrecht, pp 175–237

    Chapter  Google Scholar 

  • You J, Harwood AD, Li H, Lydy MJ (2011) Chemical techniques for assessing bioavailability of sediment-associated contaminants: SPME versus Tenax extraction. J Environ Monit 13:792–800

    Article  CAS  Google Scholar 

  • Yu L, Duan L, Naidu R, Semple KT (2018) Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: putting together a bigger picture. Sci Total Environ 613:1140–1153

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuppusamy, S., Maddela, N.R., Megharaj, M., Venkateswarlu, K. (2020). Bioavailability of Total Petroleum Hydrocarbons. In: Total Petroleum Hydrocarbons. Springer, Cham. https://doi.org/10.1007/978-3-030-24035-6_4

Download citation

Publish with us

Policies and ethics