Skip to main content

Flax Small RNAs

  • Chapter
  • First Online:
Genetics and Genomics of Linum

Abstract

Small RNAs (short RNA molecules, generally, 20-24 nucleotides in length) are the key regulators of numerous biological processes in plants. The most extensively studied small RNAs in plant species are microRNAs (miRNAs), which regulate gene expression at the post-transcriptional level. In flax, miRNAs were predicted on the basis of genome and transcriptome sequencing data. Moreover, high-throughput sequencing of small RNAs and evaluation of miRNA levels using quantitative PCR allowed determination of miRNAs in various tissues and under stress conditions and identification of differentially expressed miRNAs. Furthermore, the target genes of miRNAs were predicted. Obtained results brought important knowledge about the regulation of cell processes in flax plants via miRNA. However, further analysis covering more classes of small RNAs is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15(1):78–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159

    Article  CAS  PubMed  Google Scholar 

  • Barozai MYK (2012) In silico identification of micrornas and their targets in fiber and oil producing plant flax (Linum usitatissimum L.). Pak J Bot 44:1357–1362

    CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  • Barvkar VT, Pardeshi VC, Kale SM, Qiu S, Rollins M, Datla R, Gupta VS, Kadoo NY (2013) Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum): characterization of flax miRNA genes. Planta 237(4):1149–1161

    Article  CAS  PubMed  Google Scholar 

  • Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503

    Article  CAS  PubMed  Google Scholar 

  • Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16(12):727–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Yang CD, Hong HC, Wei TY, Tu SJ et al (2016) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44(D1):D239–D247

    Article  CAS  PubMed  Google Scholar 

  • Couzigou JM, Combier JP (2016) Plant microRNAs: key regulators of root architecture and biotic interactions. New Phytol 212(1):22–35

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39(Web Server issue):W155–W159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Zhuang Z, Zhao PX (2011) Computational analysis of miRNA targets in plants: current status and challenges. Brief Bioinform 12(2):115–121

    Article  CAS  PubMed  Google Scholar 

  • Datta R, Paul S (2015) Plant microRNAs: master regulator of gene expression mechanism. Cell Biol Int 39(11):1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Die JV, Roman B (2012) RNA quality assessment: a view from plant qPCR studies. J Exp Bot 63(17):6069–6077

    Article  CAS  PubMed  Google Scholar 

  • Fenart S, Ndong YP, Duarte J, Riviere N, Wilmer J, van Wuytswinkel O, Lucau A, Cariou E, Neutelings G, Gutierrez L et al (2010) Development and validation of a flax (Linum usitatissimum L.) gene expression oligo microarray. BMC Genomics 11:592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R et al (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26(8):941–946

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Database issue):D140–D144

    Article  CAS  PubMed  Google Scholar 

  • Hausser J, Zavolan M (2014) Identification and consequences of miRNA-target interactions – beyond repression of gene expression. Nat Rev Genet 15(9):599–612

    Article  CAS  PubMed  Google Scholar 

  • He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

    Article  CAS  PubMed  Google Scholar 

  • Henderson IR, Jacobsen SE (2008) Sequencing sliced ends reveals microRNA targets. Nat Biotechnol 26(8):881–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito H (2013) Small RNAs and regulation of transposons in plants. Genes Genet Syst 88(1):3–7

    Article  CAS  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73

    Article  CAS  PubMed  Google Scholar 

  • Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12(2):206–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Zhang B (2016) MicroRNAs in control of plant development. J Cell Physiol 231(2):303–313

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yang Z, Yu B, Liu J, Chen X (2005) Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol 15(16):1501–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Reichel M, Li Y, Millar AA (2014) The functional scope of plant microRNA-mediated silencing. Trends Plant Sci 19(12):750–756

    Article  CAS  PubMed  Google Scholar 

  • Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297(5589):2053–2056

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Tang Z, Qin J, Meng Y (2015) The use of high-throughput sequencing methods for plant microRNA research. RNA Biol 12(7):709–719

    Article  PubMed  PubMed Central  Google Scholar 

  • Melnikova NV, Belenikin MS, Bolsheva NL, Dmitriev AA, Speranskaya AS, Krinitsina AA, Samatadze TE, Amosova AV, Muravenko OV, Zelenin AV et al (2014) Flax inorganic phosphate deficiency responsive miRNAs. J Agric Sci 6(6):156–160

    Google Scholar 

  • Melnikova NV, Dmitriev AA, Belenikin MS, Speranskaya AS, Krinitsina AA, Rachinskaia OA, Lakunina VA, Krasnov GS, Snezhkina AV, Sadritdinova AF et al (2015) Excess fertilizer responsive miRNAs revealed in Linum usitatissimum L. Biochimie 109:36–41

    Article  CAS  PubMed  Google Scholar 

  • Melnikova NV, Dmitriev AA, Belenikin MS, Koroban NV, Speranskaya AS, Krinitsina AA, Krasnov GS, Lakunina VA, Snezhkina AV, Sadritdinova AF et al (2016) Identification, expression analysis, and target prediction of flax genotroph microRNAs under normal and nutrient stress conditions. Front Plant Sci 7:399

    Article  PubMed  PubMed Central  Google Scholar 

  • Moss TY, Cullis CA (2012) Computational prediction of candidate microRNAs and their targets from the completed Linum usitatissimum genome and EST database. J Nucleic Acids Investig 3:e2, 9–17

    Article  Google Scholar 

  • Neutelings G, Fenart S, Lucau-Danila A, Hawkins S (2012) Identification and characterization of miRNAs and their potential targets in flax. J Plant Physiol 169(17):1754–1766

    Article  CAS  PubMed  Google Scholar 

  • Oulas A, Karathanasis N, Louloupi A, Pavlopoulos GA, Poirazi P, Kalantidis K, Iliopoulos I (2015) Prediction of miRNA targets. Methods Mol Biol 1269:207–229

    Article  CAS  PubMed  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110(4):513–520

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  CAS  PubMed  Google Scholar 

  • Salone V, Rederstorff M (2015) Stem-loop RT-PCR based quantification of small non-coding RNAs. Methods Mol Biol 1296:103–108

    Article  CAS  PubMed  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8(4):517–527

    Article  CAS  PubMed  Google Scholar 

  • Shao C, Chen M, Meng Y (2013) A reversed framework for the identification of microRNA-target pairs in plants. Brief Bioinform 14(3):293–301

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Tian F, Chen Z, Li R, Ge Q, Lu Z (2015) Amplification-based method for microRNA detection. Biosens Bioelectron 71:322–331

    Article  CAS  PubMed  Google Scholar 

  • Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817

    Article  PubMed  PubMed Central  Google Scholar 

  • Song C, Fang J, Wang C, Guo L, Nicholas KK, Ma Z (2010) MiR-RACE, a new efficient approach to determine the precise sequences of computationally identified trifoliate orange (Poncirus trifoliata) microRNAs. PLoS One 5(6):e10861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steele AD (1991) Shift in genomic RNA patterns of human rotaviruses isolated from white children in South Africa. S Afr Med J 79(3):143–145

    CAS  PubMed  Google Scholar 

  • Sun X, Zhang Y, Zhu X, Korir NK, Tao R, Wang C, Fang J (2014) Advances in identification and validation of plant microRNAs and their target genes. Physiol Plant 152(2):203–218

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang G (2010) Plant microRNAs: an insight into their gene structures and evolution. Semin Cell Dev Biol 21(8):782–789

    Article  CAS  PubMed  Google Scholar 

  • Thomson DW, Bracken CP, Goodall GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acids Res 39(16):6845–6853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong L, Xue H, Xiong L, Xiao J, Zhou Y (2015) Improved RT-PCR assay to quantitate the pri-, pre-, and mature microRNAs with higher efficiency and accuracy. Mol Biotechnol 57(10):939–946

    Article  CAS  PubMed  Google Scholar 

  • Venglat P, Xiang D, Qiu S, Stone SL, Tibiche C, Cram D, Alting-Mees M, Nowak J, Cloutier S, Deyholos M et al (2011) Gene expression analysis of flax seed development. BMC Plant Biol 11:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R et al (2012) The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 72(3):461–473

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38(3):465–475

    Article  CAS  PubMed  Google Scholar 

  • Xie M, Zhang S, Yu B (2015) microRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci 72(1):87–99

    Article  CAS  PubMed  Google Scholar 

  • Yang LH, Wang SL, Tang LL, Liu B, Ye WL, Wang LL, Wang ZY, Zhou MT, Chen BC (2014) Universal stem-loop primer method for screening and quantification of microRNA. PLoS One 9(12):e115293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, Steward R, Chen X (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307(5711):932–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Wu G, Yuan H, Cheng L, Zhao D, Huang W, Zhang S, Zhang L, Chen H, Zhang J et al (2016) Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses. BMC Plant Biol 16(1):124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66(7):1749–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z (2010) PMRD: plant microRNA database. Nucleic Acids Res 38(Database issue):D806–D813

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dmitriev, A.A., Kudryavtseva, A.V., Melnikova, N.V. (2019). Flax Small RNAs. In: Cullis, C. (eds) Genetics and Genomics of Linum. Plant Genetics and Genomics: Crops and Models, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-23964-0_9

Download citation

Publish with us

Policies and ethics