Skip to main content

Understanding Cancer Cell Behavior Through 3D Printed Bone Microenvironments

  • Chapter
  • First Online:

Abstract

Cancer is a significant health problem worldwide and forms through orchestrated and highly complex biological processes. This process is mediated through biophysical and biochemical signals that develop from within the tumor microenvironment. Although two-dimensional culture systems of established breast cancer cell lines are the most widely used model for cancer biology and preclinical drug assessments, it poorly mimics the behavior of cancer cells in vivo and fails to reproduce the in vivo tumor microenvironment, and accordingly, the data it produces is not always predictive. Effective therapeutic strategies require a cost-efficient in vitro model that can more accurately resemble the in vivo tumor microenvironment, thus permitting a variety of in vitro studies. Rapid prototyping (RP) is one of the most promising techniques for designing and producing three-dimensional (3D) systems (hydrogels, scaffolds) for drug efficacy analysis, developing drug delivery systems, and tissue engineering applications. The application of 3D bioprinting in engineering a cancer cell microenvironment will be the focus of this chapter. We will describe previous model systems used to understand cancer cell behavior. In particular, bioprinting methods and strategies that emphasize recreation of a cancer microenvironment that promotes cultured cancer cells to express a more relevant phenotype will be examined. Our focus will be on the 3D bioprinted models that serve as a predictive model for understanding mechanisms leading to cancer cell metastasis, permit real-time study of cell–cell interactions, enable the analysis of growth factors and cytokine expression that supports tumor cell growth or survival, and the molecular cross-talk between tumor and stromal cells. The chapter will conclude with an assessment of the current state-of-the-art and future prospects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics. CA Cancer J Clin 67:7–30

    PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. [PubMed: 21296855]

    PubMed  Google Scholar 

  3. Luengo-Fernandez R, Leal J, Gray A et al (2013) Economic burden of cancer across the European Union: a population-based cost analysis. Lancet Oncol 14:1165–1174

    PubMed  Google Scholar 

  4. Mariotto AB, Yabroff KR, Shao Y et al (2011) Projections of the cost of cancer care in the United States: 2010–2020. J Natl Cancer Inst 103:117–128

    PubMed  PubMed Central  Google Scholar 

  5. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2018.html. Last accessed 10 Aug 2018

  6. DeSantis C, Siegel R, Bandi P, Jemal A (2011) Breast cancer statistics. CA Cancer J Clin 61:409–418. [PubMed: 21969133]

    PubMed  Google Scholar 

  7. O’Shaughnessy J (2005) Extending survival with chemotherapy in metastatic breast cancer. Oncologist 10(Suppl 3):20–29. [PubMed: 16368868]

    PubMed  Google Scholar 

  8. DePalma M, Hanahan D (2012) The biology of personalized cancer medicine: facing individual complexities underlying hallmark capabilities. Mol Oncol 6(2):111–127

    Google Scholar 

  9. Lawler M, Alsina D, Adams RA (2018) Critical research gaps and recommendations to inform research prioritization for more effective prevention and improved outcomes in colorectal cancer. Gut 67:179–193

    PubMed  Google Scholar 

  10. Lord CJ, Ashworth A (2010) Biology-driven cancer drug development: back to the future. BMC Biol 8:38

    PubMed  PubMed Central  Google Scholar 

  11. Ghosh S, Ghosh S (2004) Recent research and development in synthetic polymer-based drug delivery systems. J Chem Res 4:241–246

    Google Scholar 

  12. Apicella A, Cappello B, Delnobile MA et al (1994) Poly(ethylene oxide)-based delivery systems. Polym Drugs Drug Adm 545:111–125

    CAS  Google Scholar 

  13. Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Han HD, Song CK, Park YS et al (2008) A chitosan hydrogel-based cancer drug delivery system exhibits synergistic antitumor effects by combining with a vaccinia viral vaccine. Int J Pharm 350:27–3415

    CAS  PubMed  Google Scholar 

  15. Verma D, Gulati N, Kaul S, Mukherjee S, Nagaich U (2018) Protein based nanostructures for drug delivery. J Pharm (Cairo) 2018:9285854. https://doi.org/10.1155/2018/9285854, 18 pages

    Article  CAS  Google Scholar 

  16. Jao D, Xue Y, Medina J, Hu X (2017) Protein-based drug-delivery materials. Materials 10(5):517. https://doi.org/10.3390/ma10050517

    Article  CAS  PubMed Central  Google Scholar 

  17. Fuchs S, Coester C (2010) Protein-based nanoparticles as a drug delivery system: chances, risks, perspectives. J Drug Deliv Sci Technol 20(5):331–342

    CAS  Google Scholar 

  18. Yamazoe H (2018) Multifunctional protein microparticles for medical applications. Biomaterials 155(1):1–12

    CAS  PubMed  Google Scholar 

  19. MaHam A, Tang Z, Wu Z, Wang J, Lin Y (2009) Protein-based nanomedicine platforms for drug delivery. Small 5(15):1706–1721

    CAS  PubMed  Google Scholar 

  20. Talebian S, Foroughi J, Wade SJ, Vine KL, Dolatshahi-Pirouz A, Mehrali M, Conde J, Wallace G (2018) Biopolymers for antitumor implantable drug delivery systems: recent advances and future outlook. Adv Mater 30(31):e1706665. https://doi.org/10.1002/adma.201706665

    Article  CAS  PubMed  Google Scholar 

  21. Kawaski ES, Player A (2005) Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine 1:101–109

    Google Scholar 

  22. Chakraborty C, Pal S, Doss GP, Wen ZH, Lin CS (2013) Nanoparticles as ‘smart’ pharmaceutical delivery. Front Biosci (Landmark Ed) 1(18):1030–1050

    Google Scholar 

  23. Fioramonti Calixto GM, Bernegossi J, Marise de Freitas L, Carla Raquel Fontana CR, Chorilli M (2016) Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules 21:342. https://doi.org/10.3390/molecules21030342

    Article  CAS  Google Scholar 

  24. Wolinsky JB, Colson YL, Grinstaff MW (2012) Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Control Release 159:14–26

    CAS  PubMed  Google Scholar 

  25. Cafaggi S, Russo E, Stefani R, Leardi R, Caviglioli G, Parodi B et al (2007) Preparation and evaluation of nanoparticles made of chitosan or N-trimethyl chitosan and a cisplatin-alginate complex. J Control Release 121:110–123

    CAS  PubMed  Google Scholar 

  26. Mishra N, Pant P, Porwal A, Jaiswal J, Samad M, Tiwari S (2016) Targeted drug delivery: a review. Am J PharmTech Res 6(1):1–24

    CAS  Google Scholar 

  27. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 6(3):215–223

    CAS  Google Scholar 

  28. Ruiz ME, Gantner ME, Talevi A (2014) Applications of nanosystems to anticancer drug therapy (Part II. Dendrimers, micelles, lipid-based nanosystems). Recent Pat Anticancer Drug Discov 9(1):99–128

    CAS  PubMed  Google Scholar 

  29. Katsogiannou M, Peng L, Catapano CV, Rocchi P (2011) Active-targeted nanotherapy strategies for prostate cancer. Curr Cancer Drug Targets 11(8):954–965

    CAS  PubMed  Google Scholar 

  30. Aguilar ZP (2013) Targeted drug delivery, Chap. 5. In: Nanomaterials for medical applications. Elsevier, New York, pp 181–234, ISBN 9780123850898

    Google Scholar 

  31. Tang MF, Lei L, Guo SR, Huang WL (2010) Recent progress in nanotechnology for cancer therapy. Chin J Cancer 29(9):775–780

    CAS  PubMed  Google Scholar 

  32. Grimes R, Luo YY, Mills DK (2018) Bifunctionalized clay nanoparticles for cancer therapy. Appl Sci 8:281. https://doi.org/10.3390/app8020281

    Article  CAS  Google Scholar 

  33. Kalepu S, Manthina M, Padavala V (2013) Oral lipid-based drug delivery systems—an overview. Acta Pharm Sin B 3(6):361–372

    Google Scholar 

  34. Yingchoncharoen P, Kalinowski DS, Richardson DR (2016) Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev 68(3):701–787

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Porter CJ, Trevaskis NL, Charman WN (2007) Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 6(3):231

    CAS  PubMed  Google Scholar 

  36. Shrestha H, Bala R, Arora S (2014) Lipid-based drug delivery systems. J Pharm (Cairo) 2014:801820

    Google Scholar 

  37. Porter CJ, Pouton CW, Cuine JF, Charman WN (2008) Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev 60(6):673–691

    CAS  PubMed  Google Scholar 

  38. Jannin V, Musakhanian J, Marchaud D (2008) Approaches for the development of solid and semi-solid lipid-based formulations. Adv Drug Deliv Rev 60(6):734–746

    CAS  PubMed  Google Scholar 

  39. Savla R, Browne J, Plassat V, Wasan KM, Wasan EK (2017) Review and analysis of FDA approved drugs using lipid-based formulations. Drug Dev Ind Pharm 43(11):1743–1758

    CAS  PubMed  Google Scholar 

  40. Lu C, Perez-Soler R, Piperdi B, Walsh GL, Swisher SG, Smythe WR, Shin HJ, Ro JY, Feng L, Truong M et al (2005) Phase II study of a liposome-entrapped cis-platin analog (L-NDDP) administered intrapleurally and pathologic response rates in patients with malignant pleural mesothelioma. J Clin Oncol 23:3495–3501

    CAS  PubMed  Google Scholar 

  41. Lemke A, Kiderlen AF, Kayser O (2005) Amphotericin B. Appl Microbiol Biotechnol 68:151–162

    CAS  PubMed  Google Scholar 

  42. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20

    CAS  PubMed  Google Scholar 

  43. Mauro FM (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev 5:151–171

    Google Scholar 

  44. Bamrungsap S, Zilong Z, Chen T, Wang L, Li C, Fu T, Tan W (2012) A focus on nanoparticles as a drug delivery system. Nanomedicine 7(8):1253–1271

    CAS  PubMed  Google Scholar 

  45. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pérez-Herrero E, Fernández-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79

    PubMed  Google Scholar 

  47. Kalaydina RV, Bajwa K, Qorri B, Decarlo A, Szewczuk MR (2018) Recent advances in “smart” delivery systems for extended drug release in cancer therapy. Int J Nanomedicine 13:4727

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2(4):282–289

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Conde J, Doria G, Baptista P (2012) Noble metal nanoparticles applications in cancer. J Drug Deliv 2012:751075. https://doi.org/10.1155/2012/751075, 12 pages

    Article  CAS  PubMed  Google Scholar 

  50. Gerweck LE (1985) Hyperthermia in cancer therapy: the biological basis and unresolved questions. Cancer Res 45(8):3408–3414

    CAS  PubMed  Google Scholar 

  51. Wust P et al (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497

    CAS  PubMed  Google Scholar 

  52. Haranaka K, Sakurai A, Satomi N (1987) Antitumor activity of recombinant human tumor necrosis factor in combination with hyperthermia, chemotherapy, or immunotherapy. J Biol Response Mod 6(4):379–391

    CAS  PubMed  Google Scholar 

  53. Chen J et al (2007) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7(5):1318–1322

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tietze R, Lyer S, Dürr S et al (2013) Efficient drug-delivery using magnetic nanoparticles—biodistribution and therapeutic effects in tumour bearing rabbits. Nanomedicine 9:961–971

    CAS  PubMed  Google Scholar 

  55. Evans ER et al (2018) Metallic nanoparticles for cancer immunotherapy. Mater Today 21(6):673–685

    CAS  Google Scholar 

  56. Guan X (2015) Cancer metastases: challenges and opportunities. Acta Pharm Sin B 5(5):402–418

    PubMed  PubMed Central  Google Scholar 

  57. Jiang WG, Sanders AJ, Katoh M, Ungefroren U, Gieseler F, Prince M, Thompson SK, Zollo M, Spano D (2015) Tissue invasion and metastasis: molecular, biological and clinical perspectives. Semin Cancer Biol 35:S244–S275

    PubMed  Google Scholar 

  58. Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, Goncalves F (2017) Bone metastases: an overview. Oncol Rev 11(1):321. https://doi.org/10.4081/oncol.2017.321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Croucher PI, McDonald MM, Martin TJ (2016) Bone metastasis: the importance of the neighbourhood. Nat Rev Cancer 16:373–386

    CAS  PubMed  Google Scholar 

  60. Gdowski AS, Ranjan A, Vishwanatha JK (2017) Current concepts in bone metastasis, contemporary therapeutic strategies and ongoing clinical trials. J Exp Clin Cancer Res 36:108. https://doi.org/10.1186/s13046-017-0578-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smith MA, Gurney JG et al (2017) Malignant bone tumors. Cancer incidence and survival among children and adolescents: United States SEER Program 1975-1995. National Cancer Institute, SEER Program, Bethesda.: NIH Pub No. 99-4649, pp 99–110

    Google Scholar 

  62. Steeg PS (2016) Targeting metastasis. Nat Rev Cancer 16:201–218

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Redig AJ, McAllister SS (2013) Breast cancer as a systemic disease: a view of metastasis. J Intern Med 274(2):113–126. https://doi.org/10.1111/joim.12084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Massagué J, Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529:298–306

    PubMed  PubMed Central  Google Scholar 

  66. https://www.oncolink.org/cancers/bone/bone-metastases/bone-metastasis-treatment-with-medications. Last accessed 16 Jan 2019

  67. Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130(4):601–610

    CAS  PubMed  Google Scholar 

  68. Kimlin LC, Casagrande G, Virador VM (2013) In vitro three-dimensional (3D) models in cancer research: an update. Mol Carcinog 52(3):167–182. https://doi.org/10.1002/mc.21844. Epub 2011 Dec 7

    Article  CAS  PubMed  Google Scholar 

  69. Alemany-Ribes M, Semino CE (2014) Bioengineering 3D environments for cancer models. Adv Drug Deliv Rev 79–80:40–49

    PubMed  Google Scholar 

  70. Friedrich J, Ebner R, Kunz-Schughart L (2007) Experimental anti-tumor therapy in 3-D: spheroids--old hat or new challenge? Int J Radiat Biol 83:849–871

    CAS  PubMed  Google Scholar 

  71. Fessart D, Begueret H et al (2013) Three-dimensional culture model to distinguish normal from malignant human bronchial epithelial cells. Eur Respir J 42(5):1345–1356. https://doi.org/10.1183/09031936.00118812. Epub 2013 Jan 24

    Article  PubMed  Google Scholar 

  72. Luca AC, Mersch S et al (2013) Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One 8(3):e59689

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Cosson S, Otte EA, Hezaveh H, Cooper-White JJ (2015) Concise review: tailoring bioengineered scaffolds for stem cell applications in issue engineering and regenerative medicine. Stem Cells Transl Med 4:156–164

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Knowlton S et al (2015) Bioprinting for cancer research. Trends Biotechnol 33:504–513

    CAS  PubMed  Google Scholar 

  75. Baker BM, Chen CS (2012) Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 125(Pt 13):3015–3024

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhou X, Zhu W, Nowicki M, Miao S, Cui H, Holmes B, Glazer RJ, Zhang LG (2016) 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study. ACS Appl Mater Interfaces 844:30017–30026. https://doi.org/10.1021/acsami.6b10673

    Article  CAS  Google Scholar 

  77. Sitarski AM, Fairfield H, Falank C, Reagan MR (2018) 3D tissue engineered in vitro models of cancer in bone. ACS Biomater Sci Eng 4(2):324–336. https://doi.org/10.1021/acsbiomaterials.7b00097

    Article  CAS  PubMed  Google Scholar 

  78. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21:157–161

    CAS  PubMed  Google Scholar 

  79. Mironov V, Kasyanov V, Drake C, Markwald RR (2008) Organ printing: promises and challenges. Regen Med 3:93–103

    CAS  PubMed  Google Scholar 

  80. Busse A, Letsch A et al (2013) Characterization of small spheres derived from various solid tumor cell lines: are they suitable targets for T cells? Clin Exp Metastasis 30(6):781–791. https://doi.org/10.1007/s10585-013-9578-5. Epub 2013 Mar 22

    Article  CAS  PubMed  Google Scholar 

  81. Perche F, Torchilin VP (2012) Cancer cell spheroids as a model to evaluate chemotherapy protocols. Cancer Bio Ther 13(12):1205–1213

    CAS  Google Scholar 

  82. Ingram M et al (2010) Tissue engineered tumor models. Biotech Histochem 85:213–229. https://doi.org/10.3109/10520295.2010.483655

    Article  CAS  PubMed  Google Scholar 

  83. Upreti M et al (2011) Tumorendothelial cell threedimensional spheroids: new aspects to enhance radiation and drug therapeutics. Transl Oncol 4:365–376

    PubMed  PubMed Central  Google Scholar 

  84. Chang R, Emami K, Hand W, Sun W (2010) Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication 2:045004

    PubMed  Google Scholar 

  85. Mengus C, Manuele G, Muraro MG, Mele V, Amicarella F, Manfredonia C, Muenst S et al (2018) In vitro modeling of tumor–immune system interaction. ACS Biomater Sci Eng 4(2):314–323. https://doi.org/10.1021/acsbiomaterials.7b00077

    Article  CAS  PubMed  Google Scholar 

  86. Li XJ, Valadez AV, Zuo P, Nie Z (2102) Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis 4(12):1509–1525

    Google Scholar 

  87. Ghaemmaghami AM, Hancock MJ, Harrington H et al (2012) Biomimetic tissues on a chip for drug discovery. Drug Discov Today 17(3–4):173–181

    CAS  PubMed  Google Scholar 

  88. Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T (2015) Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol 35:118–126

    PubMed  Google Scholar 

  89. Mills DK (2015) Future medicine: the impact of 3D printing. J Nanomater Mol Nanotechnol 4(3):1–3. https://doi.org/10.4172/2324-8777.1000163

    Article  Google Scholar 

  90. Ventola CL (2014) Medical applications for 3D printing: current and projected uses. Pharm Ther 39(10):704–711

    Google Scholar 

  91. Mironov V, Derby B (2006) Bioprinting: a beginning. Tissue Eng 12(4):631–639

    PubMed  Google Scholar 

  92. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala AA (2016) 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34:312

    CAS  PubMed  Google Scholar 

  93. Hung BP, Naved BA, Nyberg EL, Dias M, Holmes CA, Elisseeff JJ et al (2016) Three-dimensional printing of bone extracellular matrix for craniofacial regeneration. ACS Biomater Sci Eng 2:1806–1804

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ji S, Guvendiren M (2017) Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng Biotechnol 5:23–31

    PubMed  PubMed Central  Google Scholar 

  95. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    CAS  PubMed  Google Scholar 

  96. Khatiwala C, Law R, Shepard B, Dorfman S, Ceste M (2012) 3D cell bioprinting for regenerative medicine research and therapies. Gene Ther Regul 7(1):1230004. (19 pages). https://doi.org/10.1142/S1568558611000301

    Article  CAS  Google Scholar 

  97. Schubert C, van Langeveld MC, Donoso LA (2012) Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol 98(2):159–161

    Google Scholar 

  98. Ozbolat IT, Yu Y (2013) Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 60:691–699

    PubMed  Google Scholar 

  99. Cu X, Boland T, D’Lima DD, Lotz MK (2012) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6(2):149–155

    Google Scholar 

  100. O’Brien CM, Holmes B, Faucett S, Zhang LG (2015) Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration. Tissue Eng Part B Rev 21:103

    PubMed  Google Scholar 

  101. Gurkan UA et al (2014) Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets. Mol Pharm 11(7):2151–2159

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Xu F, Sridharan B, Wang S, Gurkan UA, Syverud B, Demirci U (2011) Embryonic stem cell bioprinting for uniform and controlled size embryoid body formation. Biomicrofluidics 5(2):22207

    PubMed  Google Scholar 

  103. Gudapati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20–42

    CAS  PubMed  Google Scholar 

  104. Wijshoff H (2010) The dynamics of the piezo inkjet printhead operation. Phys Rep 491(4):77–177

    CAS  Google Scholar 

  105. Tasoglu S, Demirci U (2013) Bioprinting for stem cell research. Trends Biotechnol 31(1):10–19

    CAS  PubMed  Google Scholar 

  106. Kamisuki S, Hagata T, Tezuka C, Nose Y, Fujii M, Atobe M (1998) A low power, small, electrostatically-driven commercial inkjet head. In: Proceedings of the eleventh annual international workshop on Micro Electro Mechanical Systems, 1998. MEMS 98, pp 63–68

    Google Scholar 

  107. Guillotin B, Guillemot F (2011) Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 29(4):183–190

    CAS  PubMed  Google Scholar 

  108. Guillotin B et al (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31:7250–7256

    CAS  PubMed  Google Scholar 

  109. Sears NA, Seshadri DR, Dhavalikar PS, Cosgriff-Hernandez E (2016) A review of three-dimensional printing in tissue engineering. Tissue Eng Part B Rev 22(4):298–310

    CAS  PubMed  Google Scholar 

  110. Sears NA, NA SDR, Dhavalikar PS, Cosgriff-Hernandez E (2016) A review of three-dimensional printing in tissue engineering. Tissue Eng Part B Rev 22(4):298–310

    CAS  PubMed  Google Scholar 

  111. Nahmias Y, Odde DJ (2006) Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic-endothelial sinusoid-like structures. Nat Protoc 1(5):2288

    CAS  PubMed  Google Scholar 

  112. Koch L, Gruene M, Unger C, Chichkov B (2011) Laser assisted cell printing. Curr Pharm Biotechnol 14(1):91–97

    Google Scholar 

  113. Saunders R, Bosworth L, Gough J, Derby B, Reis N (2004) Selective cell delivery for 3D tissue culture and engineering. Eur Cell Mater 7(Suppl 1):84–85

    Google Scholar 

  114. Demirci U, Montesano G (2007) Single cell epitaxy by acoustic picolitre droplets. Lab Chip 7(9):1139–1145

    CAS  PubMed  Google Scholar 

  115. Guillemot F, Souquet A, Catros S, Guillotin B (2010) Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine 5(3):507–515

    PubMed  Google Scholar 

  116. Mir TA, Nakamura M (2017) Three-dimensional bioprinting: toward the era of manufacturing human organs as spare parts for healthcare and medicine. Tissue Eng Part B Rev 23(3):245–256. https://doi.org/10.1089/ten.TEB.2016.0398. Epub 2017 Mar 21

    Article  PubMed  Google Scholar 

  117. Ferris CJ, Gilmore KG, Wallace GG (2013) Biofabrication: an overview of the approaches used for printing of living cells. Appl Microbiol Biotechnol 97(10):4243–4258

    CAS  PubMed  Google Scholar 

  118. Arslan-Yildiz A, El Assal R, Chen P, Guven S, Inci F, Demirci U (2016) Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 8(1):14103

    Google Scholar 

  119. Chartrain NA, Williams CB, Whittington AR (2016) Engineering tissues with bioprinting. BioProcess Int 14(10):2016

    Google Scholar 

  120. Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35(2):217–239

    CAS  PubMed  Google Scholar 

  121. Rutz L, Lewis PL, Shah RN (2017) Toward next-generation bioinks: tuning material properties pre- and post-printing to optimize cell viability. MRS Bull 42(8):563–570

    CAS  Google Scholar 

  122. Yang E, Miao S, Zhong J, Zhang Z, Mills DK, Grace Zhang LG (2018) Bio-based polymers for 3D printing of bioscaffolds. Poly Rev (Phila Pa) 58(4):668–687. https://doi.org/10.1080/15583724.2018.1484761

    Article  CAS  Google Scholar 

  123. Abdelaal OAM, Darwish SMH (2013) Review of rapid prototyping techniques for tissue engineering scaffolds fabrication. In: Öchsner A, da Silva L, Altenbach H (eds) Characterization and development of biosystems and biomaterials. Advanced structured materials. Springer, Berlin, pp 33–54. https://doi.org/10.1007/978-3-642-31470-4_3

    Chapter  Google Scholar 

  124. Charbe N, McCarron PA, Tambuwala MM (2017) Three-dimensional bio-printing: a new frontier in oncology research. World J Clin Oncol 8(1):21–36

    PubMed  PubMed Central  Google Scholar 

  125. Zhao Y, Yao R, Ouyang L et al (2014) Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 6(3):035001

    PubMed  Google Scholar 

  126. Xu F, Celli J, Rizvi I, Moon S, Hasan T, Demirci U (2011) A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J 6(2):204–212

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kenny HA, Krausz T, Yamada SD, Lengyel E (2007) Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. Int J Cancer 121:1463–1472. [PubMed: 17546601]

    CAS  PubMed  Google Scholar 

  128. Serrano D, Terres MC, Lalatsa A (2018) Applications of 3D printing in cancer. J 3D Print Med 2(3):115–127

    CAS  Google Scholar 

  129. Albritton JL, Miller JS (2017) 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments. Dis Model Mech 10(1):3–14

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhou X, Zhu W, Nowicki M, Miao S, Cui H, Holmes B, Glazer RI, Grace Zhang LG (2016) 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study. ACS Appl Mater Interfaces 8(44):30017–30026. https://doi.org/10.1021/acsami.6b10673

    Article  CAS  PubMed  Google Scholar 

  131. Bray LJ, Binner M, Holzheu A, Friedrichs J, Freudenberg U, Hutmacher DW, Werner C (2015) Multi-parametric hydrogels support 3D in vitro bioengineered microenvironment models of tumour angiogenesis. Biomaterials 53:609–620. https://doi.org/10.1016/j.biomaterials.2015.02.124

    Article  CAS  PubMed  Google Scholar 

  132. Pathi SP, Kowalczewski C, Tadipatri R, Fischbach CA (2010) A novel 3-D mineralized tumor model to study breast cancer bone metastasis. PLoS One 5(1):e8849

    PubMed  PubMed Central  Google Scholar 

  133. Arrigoni C, Bersini S, Gilardi M, Moretti M (2016) In vitro coculture models of breast cancer metastatic progression towards bone. Int J Mol Sci 17(9):1405

    PubMed Central  Google Scholar 

  134. Mironov V, Visconti RP, Kasyanov V, Forgacs G et al (2009) Organ printing: tissue spheroids as building blocks. Biomaterials:30, 2164–2174. [PubMed: 19176247]

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Young EW (2013) Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment. Integr Biol 5:1096–1109

    CAS  Google Scholar 

  136. Vidi PA, Maleki T, Ochoa M et al (2014) Disease-on-a-chip: mimicry of tumor growth in mammary ducts. Lab Chip 14(1):172–177

    CAS  PubMed  Google Scholar 

  137. Guillemot F et al (2010) High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 6:2494–2500

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by the Center for Dental, Oral & Craniofacial Tissue & Organ Regeneration (C-DOCTOR) with the support of NIH NIDCR (U24DE026914).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Mills .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, Y., Elumalai, A., Humayun, A., Mills, D.K. (2019). Understanding Cancer Cell Behavior Through 3D Printed Bone Microenvironments. In: Guvendiren, M. (eds) 3D Bioprinting in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-23906-0_6

Download citation

Publish with us

Policies and ethics