Skip to main content

Online Variational Learning for Medical Image Data Clustering

  • Chapter
  • First Online:
Book cover Mixture Models and Applications

Part of the book series: Unsupervised and Semi-Supervised Learning ((UNSESUL))

Abstract

Data mining is an extensive area of research involving pattern discovery and feature extraction which is applied in various critical domains. In clinical aspect, data mining has emerged to assist the clinicians in early detection, diagnosis, and prevention of diseases. Advances in computational methods have led to implementation of machine learning in multi-modal clinical image analysis. One recent method is online learning where data become available in a sequential order, thus sequentially updating the best predictor for the future data at each step, as opposed to batch learning techniques which generate the best predictor by learning the entire data set at once.

In this chapter, we have examined and analysed multi-modal medical images by developing an unsupervised machine learning algorithm based on online variational inference for finite inverted Dirichlet mixture model. Our prime focus was to validate the developed approach on medical images. We do so by implementing the algorithm on both synthetic and real data sets. We test the algorithm’s ability to detect challenging real world diseases, namely brain tumour, lung tuberculosis, and melanomic skin lesion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.smir.ch/BRATS/Start2015.

  2. 2.

    Same as footnote 1.

  3. 3.

    https://isic-archive.com/api/v1.

References

  1. Agrawal, J.P., Erickson, B.J., Kahn, C.E.: Imaging informatics: 25 years of progress. Yearb. Med. Inform. Suppl 1, 23–31 (2016)

    Google Scholar 

  2. Sohail, M.N., Jiadong, R., Uba, M.M., Irshad, M.: A comprehensive looks at data mining techniques contributing to medical data growth: A survey of researcher reviews. In: Patnaik, S., Jain, V. (eds.) Recent Developments in Intelligent Computing, Communication and Devices. Springer, Singapore, pp. 21–26 (2019)

    Chapter  Google Scholar 

  3. Ganguly, D., Chakraborty, S., Balitanas, M., Kim, Th.: Medical imaging: A review. In: Kim, Th., Stoica, A., Chang, R.S. (eds.) Security-Enriched Urban Computing and Smart Grid. Springer, Heidelberg, pp. 504–516 (2010)

    Chapter  Google Scholar 

  4. Perera, C.M., Chakrabarti, R.: A review of m-health in medical imaging. Telemed. e-Health 21(2), 132–137 (2015)

    Article  Google Scholar 

  5. Lester, D.S., Olds, J.L.: Biomedical imaging: 2001 and beyond. Anat. Rec. An Offi. Publ. Am. Assoc. Anatomists 265(2), 35–36 (2001)

    Google Scholar 

  6. Van Beek, E.J., Hoffman, E.A.: Functional imaging: CT and MRI. Clin. Chest Med. 29(1), 195–216 (2008)

    Article  Google Scholar 

  7. Doi, K.: Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput. Med. Imaging Graph. 31(4–5), 198–211 (2007)

    Article  Google Scholar 

  8. Petrick, N., Sahiner, B., Armato III, S.G., Bert, A., Correale, L., Delsanto, S., Freedman, M.T., Fryd, D., Gur, D., Hadjiiski, L., Huo, Z., Jiang, Y., Morra, L., Paquerault, S., Raykar, V., Samuelson, F., Summers, R.M., Tourassi, G., Yoshida, H., Zheng, B., Zhou, C., Chan, H.P.: Evaluation of computer-aided detection and diagnosis systems. Med. Phys. 40(8), 087001 (2013)

    Article  Google Scholar 

  9. Erickson, B.J., Korfiatis, P., Akkus, Z., Kline, T.L.: Machine learning for medical imaging. Radiographics 37(2), 505–515 (2017)

    Article  Google Scholar 

  10. Guadalupe Sanchez, M., Guadalupe Sánchez, M., Vidal, V., Verdu, G., Verdú, G., Mayo, P., Rodenas, F.: Medical image restoration with different types of noise. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4382–4385 (2012)

    Google Scholar 

  11. Sittig, D.F., Wright, A., Osheroff, J.A., Middleton, B., Teich, J.M., Ash, J.S., Campbell, E., Bates, D.W.: Grand challenges in clinical decision support. J. Biomed. Inform. 41(2), 387–392 (2008)

    Article  Google Scholar 

  12. Chen, T.J., Chuang, K.S., Chang, J.H., Shiao, Y.H., Chuang, C.C.: A blurring index for medical images. J. Digit. Imaging 19(2), 118–125 (2005)

    Article  Google Scholar 

  13. Fan, W., Bouguila, N., Ziou, D.: Variational learning for finite Dirichlet mixture models and applications. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 762–774 (2012)

    Article  Google Scholar 

  14. Tirdad, P., Bouguila, N., Ziou, D.: Variational learning of finite inverted Dirichlet mixture models and applications. In: Laalaoui, Y., Bouguila, N. (eds.) Artificial Intelligence Applications in Information and Communication Technologies, vol. 607, pp. 119–145. Springer, Cham (2015)

    Chapter  Google Scholar 

  15. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods (Springer Texts in Statistics). Springer, Heidelberg (2005)

    Google Scholar 

  16. Gultepe, E., Makrehchi, M.: Improving clustering performance using independent component analysis and unsupervised feature learning. Hum-centric Comput. Inf. Sci. 8(1), 148:1–148:19 (2018)

    Google Scholar 

  17. Fan, W., Bouguila, N., Ziou, D.: Variational learning of finite Dirichlet mixture models using component splitting. Neurocomputing 129, 3–16 (2014)

    Article  Google Scholar 

  18. Bouguila, N., Ziou, D.: Online clustering via finite mixtures of Dirichlet and minimum message length. Eng. Appl. Artif. Intell. 19(4), 371–379 (2006)

    Article  Google Scholar 

  19. Zakariya, S.M., Ali, R., Ahmad, N.: Combining visual features of an image at different precision value of unsupervised content based image retrieval. In: 2010 IEEE International Conference on Computational Intelligence and Computing Research, pp. 1–4 (2010)

    Google Scholar 

  20. Constantinopoulos, C., Likas, A.: Unsupervised learning of Gaussian mixtures based on variational component splitting. IEEE Trans. Neural Netw. 18(3), 745–755 (2007)

    Article  Google Scholar 

  21. Williams, G.: Descriptive and predictive analytics. In: Data Mining with Rattle and R: The Art of Excavating Data for Knowledge Discovery, pp. 171–177. Springer, New York (2011)

    Chapter  Google Scholar 

  22. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and future directions. Data Min. Knowl. Disc. 15(1), 55–86 (2007)

    Article  MathSciNet  Google Scholar 

  23. Bellazzi, R., Zupan, B.: Predictive data mining in clinical medicine: current issues and guidelines. Int. J. Med. Inform. 77(2), 81–97 (2008)

    Article  Google Scholar 

  24. Swan, M.: Emerging patient-driven health care models: an examination of health social networks, consumer personalized medicine and quantified self-tracking. Int. J. Environ. Res. Public Health 6(2), 492–525 (2009)

    Article  Google Scholar 

  25. Iavindrasana, J., Cohen, G., Depeursinge, A., Müller, H., Meyer, R., Geissbuhler, A. Clinical data mining: a review. Yearb. Med. Inform. 121–133 (2018)

    Google Scholar 

  26. Chechulin, Y., Nazerian, A., Rais, S., Malikov, K.: Predicting patients with high risk of becoming high-cost healthcare users in Ontario (Canada). Healthc. Policy 9, 68–79 (2014)

    Google Scholar 

  27. Ramezankhani, A., Kabir, A., Pournik, O., Azizi, F., Hadaegh, F.: Classification-based data mining for identification of risk patterns associated with hypertension in middle eastern population: A 12-year longitudinal study. Medicine (Baltimore) 95(35), e4143 (2016)

    Article  Google Scholar 

  28. Parva, E., Boostani, R., Ghahramani, Z., Paydar, S.: The necessity of data mining in clinical emergency medicine; a narrative review of the current literature. Bull. Emerg. Trauma. 5(2), 90–95 (2017)

    Google Scholar 

  29. Kuo, I.T., Chang, K.Y., Juan, D.F., Hsu, S.J., Chan, C.T., Tsou, M.Y.: Time-dependent analysis of dosage delivery information for patient-controlled analgesia services. PLoS One 13(3), 1–13 (2018)

    Article  Google Scholar 

  30. Lee, M.J., Chen, C.J., Lee, K.T., Shi, H.Y.: Trend analysis and outcome prediction in mechanically ventilated patients: A nationwide population-based study in Taiwan. PLoS One 10(4), 1–13 (2015)

    Google Scholar 

  31. Baek, H., Cho, M., Kim, S., Hwang, H., Song, M., Yoo, S.: Analysis of length of hospital stay using electronic health records: A statistical and data mining approach. PLoS One 13(4), 1–16 (2018)

    Article  Google Scholar 

  32. Tiao, G.G., Cuttman, I.: The inverted Dirichlet distribution with applications. J. Am. Stat. Assoc. 60(311), 793–805 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, R., Wunsch, D.C.: Clustering algorithms in biomedical research: A review. IEEE Rev. Biomed. Eng. 3, 120–154 (2010)

    Article  Google Scholar 

  34. Wang, H.X., Luo, B., Zhang, Q.B., Wei, S.: Estimation for the number of components in a mixture model using stepwise split-and-merge EM algorithm. Pattern Recogn. Lett. 25(16), 1799–1809 (2004)

    Article  Google Scholar 

  35. Schneider, A., Hommel, G., Blettner, M.: Linear regression analysis: part 14 of a series on evaluation of scientific publications. Dtsch. Arztebl. Int. 44, 776–82 (2010)

    Google Scholar 

  36. Kovalchuk, S.V., Funkner, A.A., Metsker, O.G., Yakovlev, A.N.: Simulation of patient flow in multiple healthcare units using process and data mining techniques for model identification. J. Biomed. Inform. 82, 128–142 (2018)

    Article  Google Scholar 

  37. Jensen, P.B., Jensen, L.J., Brunak, S.: Mining electronic health records: towards better research applications and clinical care. Nat. Rev. Genet. 13(6), 395–405 (2012)

    Article  Google Scholar 

  38. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)

    Article  MathSciNet  Google Scholar 

  39. Corduneanu, A., Bishop, C.: Variational Bayesian model selection for mixture distributions. In: Proceedings Eighth International Conference on Artificial Intelligence and Statistics, pp. 27–34. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  40. Lawrence, N.D., Bishop, C.M., Jordan, M.I.: Mixture Representations for Inference and Learning in Boltzmann Machines (2013). CoRR abs/1301.7393. 1301.7393

    Google Scholar 

  41. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. Mach. Learn. 37(2), 183–233 (1999)

    Article  MATH  Google Scholar 

  42. Bishop, C.M., Lawrence, N., Jaakkola, T., Jordan, M.I.: Approximating posterior distributions in belief networks using mixtures. In: Proceedings of the 1997 Conference on Advances in Neural Information Processing Systems 10, pp. 416–422. MIT Press, Cambridge (1998)

    Google Scholar 

  43. Amari, S.I.: Natural gradient works efficiently in learning. Neural. Comput. 10(2), 251–276 (1998)

    Article  Google Scholar 

  44. Fan, W., Bouguila, N.: Online variational learning of finite Dirichlet mixture models. Evol. Syst. 3(3), 153–165 (2012)

    Article  Google Scholar 

  45. Hoffman, M., Bach, F.R., Blei, D.M.: Online learning for latent Dirichlet allocation. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 23, pp. 856–864. Curran Associates, Inc., (2010)

    Google Scholar 

  46. Bakas, S., Kuijf, H.J., Keyvan, F., Reyes, M., van Walsum, T.: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Berlin (2018)

    Google Scholar 

  47. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M., Arbel, T., Avants, B.B., Ayache, N., Buendia, P., Collins, D.L., Cordier, N., Corso, J.J., Criminisi, A., Das, T., Delingette, H., Demiralp, Durst, C.R., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin, K.M., Jena, R., John, N.M., Konukoglu, E., Lashkari, D., Mariz, J.A., Meier, R., Pereira, S., Precup, D., Price, S.J., Raviv, T.R., Reza, S.M.S., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H., Shotton, J., Silva, C.A., Sousa, N., Subbanna, N.K., Szekely, G., Taylor, T.J., Thomas, O.M., Tustison, N.J., Unal, G., Vasseur, F., Wintermark, M., Ye, D.H., Zhao, L., Zhao, B., Zikic, D., Prastawa, M., Reyes, M., Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Google Scholar 

  48. Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: An open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11), e245 (2013)

    Article  Google Scholar 

  49. Barkhof, F., Scheltens, P.: Imaging of white matter lesions. Cerebrovasc. Dis. 13(Suppl 2), 21–30 (2002)

    Article  Google Scholar 

  50. Arroyo-Camarena, S., Domínguez-Cherit, J., Lammoglia-Ordiales, L., Fabila-Bustos, D.A., Escobar-Pio, A., Stolik, S., Valor-Reed, A., de la Rosa-Vázquez, J.: Spectroscopic and imaging characteristics of pigmented non-melanoma skin cancer and melanoma in patients with skin phototypes iii and iv. Oncol. Ther. 4(2), 315–331 (2016)

    Article  Google Scholar 

  51. Codella, N.C.F., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N.K., Kittler, H., Halpern, A.: Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium On Biomedical Imaging (ISBI), Hosted By The International Skin Imaging Collaboration (ISIC) (2017). CoRR abs/1710.05006, 1710.05006

    Google Scholar 

  52. Asaid, R., Boyce, G., Padmasekara, G.: Use of a smartphone for monitoring dermatological lesions compared to clinical photography. J. Mob. Technol. Med. 1, 16–18 (2012)

    Article  Google Scholar 

  53. Wu, X., Marchetti, M.A., Marghoob, A.A.: Dermoscopy: not just for dermatologists. Melanoma Manag 2(1), 63–73 (2015)

    Article  Google Scholar 

  54. Sakamoto, K.: The pathology of mycobacterium tuberculosis infection. Vet. Pathol. 49(3), 423–39 (2012)

    Article  Google Scholar 

  55. Huda, W., Abrahams, R.B.: Radiographic techniques, contrast, and noise in x-ray imaging. AJR Am. J. Roentgenol. 204(2), W126–131 (2015)

    Article  Google Scholar 

  56. Brady, A., Laoide, R., McCarthy, P., McDermott, R.: Discrepancy and error in radiology: concepts, causes and consequences. Ulster Med. J. 81(1), 3–9 (2012)

    Google Scholar 

  57. Candemir, S., Jaeger, S., Palaniappan, K., P Musco, J., K Singh, R., Xue, Z., Karargyris, A., Antani, S., Thoma, G., Mcdonald, C.: Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans. Med. Imaging 33, 577–590 (2014)

    Article  Google Scholar 

  58. Jaeger, S., Karargyris, A., Candemir, S., Folio, L., Siegelman, J., Callaghan, F., Xue, Z., Palaniappan, K., Singh, R.K., Antani, S., Thoma, G., Wang, Y., Lu, P., McDonald, C.J.: Automatic tuberculosis screening using chest radiographs. IEEE Trans. Med. Imaging 33(2), 233–245 (2014)

    Article  Google Scholar 

  59. Kohli, M.D., Summers, R.M., Geis, J.R.: Medical image data and datasets in the era of machine learning-whitepaper from the 2016 c-MIMI meeting dataset session. J. Digit. Imaging 30, 392–399 (2017)

    Article  Google Scholar 

  60. Valindria, V.V., Lavdas, I., Bai, W., Kamnitsas, K., Aboagye, E.O., Rockall, A.G., Rueckert, D., Glocker, B.: Reverse classification accuracy: predicting segmentation performance in the absence of ground truth. IEEE Trans. Med. Imaging 36, 1597–1606 (2017)

    Article  Google Scholar 

  61. Kouanou, A.T., Tchiotsop, D., Kengne, R., Zephirin, D.T., Armele, N.M.A., Tchinda, R.: An optimal big data workflow for biomedical image analysis. Inform. Med. Unlocked 11, 68–74 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meeta Kalra .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Proof of Eq. (11.17): Variational Solution of \(Q\big ( \mathcal {Z}\big )\)

For the variational solution Q s(Θ s), the general expression expressed as:

$$\displaystyle \begin{aligned} \ln Q_s(\varTheta_s) = \big<\ln p(X,\varTheta)\big>_{j\neq s} + const \end{aligned} $$
(11.46)

where const is an additive term representing every term that is independent of Q s(Θ s). Now consider the joint distribution in Eq. (11.10), the variational solution for \(Q\big (\mathcal {Z}\big )\) can be derived as follows:

$$\displaystyle \begin{aligned}{{}} \ln Q\big(\mathcal{Z}\big) = \alpha_{ij} \Bigg[ \ln\pi_j + \mathcal{R}_j + \sum^{D+1}_{l=1}(\alpha_{jl} - 1) \ln X_{il} \Bigg] + const \end{aligned} $$
(11.47)

Where

$$\displaystyle \begin{aligned} \mathcal{R}_j = \Bigg<\ln \frac{\varGamma (\sum^{D+1}_{l=1}\alpha_{jl}}{\prod_{{D+1}_{l=1}} \varGamma(\alpha_{jl})} \Bigg>_{\alpha_{jl},\ldots \alpha_{jD+1}} \end{aligned} $$
(11.48)

and

$$\displaystyle \begin{aligned} \alpha_{jl} = \big<\alpha_{jl} \big> = \frac{u_{jl}}{v_{jl}} \end{aligned} $$
(11.49)

Since we don’t have a closed form solution for \(\mathcal {R}_{j}\), therefore it is not possible to directly apply the variational inference. Therefore, in order to provide traceable approximations, the second-order Taylor’s expansion is used to approximate the expected values of parameters α j [14]. Hence, considering the logarithm form of (11.6), Eq. (11.47) can be written as

$$\displaystyle \begin{aligned} \ln Q \big( \mathcal{Z} \big) = \sum^ N_{i=1} \sum^M_{j=1} \mathcal{Z}_{ij} \ln \rho_{ij} + const \end{aligned} $$
(11.50)

where

$$\displaystyle \begin{aligned} \ln \rho_{ij} = \ln \pi_{j} + \mathcal{R}_{j} + \sum^D_{l=1}(\alpha_{jl} - 1) \ln X_{il} \end{aligned} $$
(11.51)

Since all the term without \(\mathcal {Z}_{ij}\) can be added to the constant, it possible to show that

$$\displaystyle \begin{aligned} Q\big(\mathcal{Z}\big) \propto \prod^N_{i=1} \prod^M_{j=1} \rho_{ij}^{Z_{ij}} \end{aligned} $$
(11.52)

To find the exact formula for \(Q(\mathcal {Z})\), Eq. (11.53) should be normalized and the calculation can be expressed as

$$\displaystyle \begin{aligned} Q\big(\mathcal{Z}\big)= \prod^N_{i=1} \prod^M_{j=1} r_{ij}^{Z_{ij}} \end{aligned} $$
(11.53)

where

$$\displaystyle \begin{aligned} r_{ij} = \frac{\rho_{ij}}{\sum^M_{j=1}\rho_{ij}} \end{aligned} $$
(11.54)

It is noteworthy that \(\sum ^M_{j=1} r_{ij} = 1\), thus the result for \(Q(\mathcal {Z})\) is

$$\displaystyle \begin{aligned} \big<\mathcal{Z}_{ij}\big> = r_{ij} \end{aligned} $$
(11.55)

1.2 Proof of Eqs. (11.18), (11.22) and (11.23)

Assuming the parameters α jl are independent in a mixture model with M components, we can factorize Q(α) as

$$\displaystyle \begin{aligned} Q(\alpha) = \prod^M_{j=1}\prod^{D+1}_{l=1} Q(\alpha_{jl}) \end{aligned} $$
(11.56)

We compute the variational solution for the Q(α jl ) by using Eq. (11.16) instead of using the gradient method. The logarithm of the variational solution Q(α jl ) is given by,

$$\displaystyle \begin{aligned}{{}} \ln Q\big(\alpha_{jl}\big) = &\big<\ln p\big(\mathcal{X},\varTheta\big)\big>_{\varTheta \ne \alpha_{jl}}\\ =&\sum_{i=1}^N\big<Z_{ij}\big>\mathcal{J}\big(\alpha_{jl}\big)+\alpha_{jl}\sum_{i=1}^N\big<Z_{ij}\big>\ln X_{il} - \alpha_{jl} \ln\Bigg(1+\sum_{l=1}^{D+1}X_{il}\Bigg)\\ &+\big(u_{jl}-1 \big) \ln \alpha_{jl} - \nu_{jl}\alpha_{jl} + \text{const} \end{aligned} $$
(11.57)

where,

$$\displaystyle \begin{aligned} \mathcal{J}\big(\alpha_{jl}\big) = \Bigg<\ln \frac{\varGamma\big(\alpha_{jl}+\sum_{s \ne l}^{D+1}\alpha_{js}\big)}{\varGamma\big(\alpha_{jl}\big)\prod_{s \ne l}^{D+1}\varGamma\big(\alpha_{js}\big)}\Bigg>_{\varTheta \ne \alpha_{jl}} \end{aligned} $$
(11.58)

Similar to what we encountered in the case of R j, the equation for \(\mathcal {J}\big (\alpha _{jl}\big )\) is also intractable. We solve this problem finding the lower bound for the equation by calculating the first-order Taylor expansion with respect to \(\overline {\alpha }_{jl}\). The calculated lower bound is given by [44],

$$\displaystyle \begin{aligned} \mathcal{J}\big(\alpha_{jl}\big) \ge\,\, & \overline{\alpha}_{jl} \ln \alpha_{jl}\Bigg[\psi\Bigg(\sum_{l=1}^{D+1}\overline{\alpha}_{jl}\Bigg)-\psi\big(\overline{\alpha}_{jl}\big)+ \sum_{s \ne l}^{D+1}\overline{\alpha}_{js}\\ &\times\psi'\Bigg(\sum_{l=1}^{D+1}\overline{\alpha}_{jl}\Bigg)\big(\big<\ln \alpha_{js}\big>-\ln\overline{\alpha}_{js}\big)\Bigg] + \text{const} \end{aligned} $$
(11.59)

Substituting this equation for lower bound in Eq. (11.57)

$$\displaystyle \begin{aligned} \ln Q\big(\alpha_{jl}\big) = &\sum_{i=1}^N\big<Z_{ij}\big>\overline{\alpha}_{jl} \ln \alpha_{jl}\Bigg[\psi\Bigg(\sum_{l=1}^{D+1}\overline{\alpha}_{jl}\Bigg)-\psi\big(\overline{\alpha}_{jl}\big)\\ &+ \sum_{s \ne l}^{D+1}\overline{\alpha}_{js} \psi'\Bigg(\sum_{l=1}^{D+1}\overline{\alpha}_{jl}\Bigg)\big(\big<\ln \alpha_{js}\big>-\ln\overline{\alpha}_{js}\big)\Bigg]\\ & +\alpha_{jl}\sum_{i=1}^N\big<Z_{ij}\big>\ln X_{il} - \alpha_{jl} \ln\Bigg(1+\sum_{l=1}^{D+1}X_{il}\Bigg)\\ &+\big(u_{jl}-1 \big) \ln \alpha_{jl} - \nu_{jl}\alpha_{jl} + \text{const} \end{aligned} $$
(11.60)

This equation can be rewritten as,

$$\displaystyle \begin{aligned}{{}} \ln Q\big(\alpha_{jl}\big) = \ln \alpha_{jl}\big(u_{jl}+\varphi_{jl} - 1\big) - \alpha_{jl}\big(\nu_{jl}-\vartheta_{jl}\big) + \text{const} \end{aligned} $$
(11.61)

where,

$$\displaystyle \begin{aligned} \varphi_{jl} =&\sum_{i=1}^N\big<Z_{ij}\big>\overline{\alpha}_{jl} \Bigg[\psi\Bigg(\sum_{l=1}^{D+1}\overline{\alpha}_{jl}\Bigg)-\psi\big(\overline{\alpha}_{jl}\big)\\ &+ \sum_{s \ne l}^{D+1}\overline{\alpha}_{js} \psi'\Bigg(\sum_{l=1}^{D+1}\overline{\alpha}_{jl}\Bigg)\big(\big<\ln \alpha_{js}\big>-\ln\overline{\alpha}_{js}\big)\Bigg] \end{aligned} $$
(11.62)
$$\displaystyle \begin{aligned} \vartheta_{jl} =& \sum_{i=1}^N\big<Z_{ij}\big>\Bigg[\ln X_{il}- \ln \Bigg(1+\sum_{l=1}^D X_{il}\Bigg)\Bigg] \end{aligned} $$
(11.63)

Equation (11.61) is the logarithmic form of a gamma distribution. If we exponentiate both the sides, we get,

$$\displaystyle \begin{aligned} Q\big(\alpha_{jl}\big) \propto \alpha_{jl}^{u_{jl}+\varphi_{jl} - 1}e^{-\big(\nu_{jl}-\vartheta_{jl}\big)\alpha_{jl}} \end{aligned} $$
(11.64)

This leaves us with the optimal solution for the hyper-parameters u jl and ν jl given by,

$$\displaystyle \begin{aligned} u_{jl}^* = u_{jl} + \varphi_{jl},\,\,\,\, \nu_{jl}^* = \nu_{jl}-\vartheta_{jl} \end{aligned} $$
(11.65)

1.3 Proof of Eq. (11.27)

We calculate the mixing coefficients value π by maximizing the lower bound w.r.t to π. It is essential to include Lagrangian term in the lower bound because of the constraint \(\sum ^M_{j=1} \pi _j = 1\). Then, solving for the derivative w.r.t π j and setting the result to zero, we have [44]

$$\displaystyle \begin{aligned} {{}} \frac{\partial\mathcal{L}(Q)}{\partial \pi_{j}} &= \frac{\partial\mathcal{L}(Q)}{\partial \pi_{j}} \sum^N_{i=1}\sum^M_{j=1} r_{ij} \ln \pi_{j} + \lambda \Bigg(\sum^M_{j=1}\pi_j - 1 \Bigg) \\ &= \sum^N_{i=1}r_{ij}(1/\pi_j)+ \lambda = 0 \end{aligned} $$
(11.66)
$$\displaystyle \begin{aligned} {{}} \Rightarrow \sum^N_{i=1}r_{ij} = -\lambda \pi_j \end{aligned} $$
(11.67)

By taking the sum of both sides of Eq. (11.67) over j, we can obtain λ = −N. Then substituting the value of λ Eq. (11.66), we can obtain

$$\displaystyle \begin{aligned} \pi_j = \frac{1}{N} \sum^N_{i=1} r_{ij} \end{aligned} $$
(11.68)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalra, M., Osadebey, M., Bouguila, N., Pedersen, M., Fan, W. (2020). Online Variational Learning for Medical Image Data Clustering. In: Bouguila, N., Fan, W. (eds) Mixture Models and Applications. Unsupervised and Semi-Supervised Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-23876-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23876-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23875-9

  • Online ISBN: 978-3-030-23876-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics