Skip to main content

Fungal Diversity and Enzymes Involved in Lignin Degradation

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Lignin is a polyphenolic compound found in the plant secondary cell wall. It provides mechanical strength and protection from pathogens. Lignin is an abundant organic compound, and it is, however, an impediment in carbon cycle. Lignin is also an unwanted byproduct in pulp and paper industry. It may be degraded under specific conditions by certain microorganisms including fungi and some bacteria. The biodegradation of lignin is mostly in aerobic conditions and is performed by a consortium of enzymes, mostly monooxygenase and dioxygenases. The well-known enzymes include lignin peroxidase, manganese peroxidase and laccase involved in direct degradation and glucose oxidase, glyoxal oxidase, catalase, superoxide dismutase, etc. as supportive enzymes. The biodegradation of lignin removes lignin from plant providing cellulose for paper industry. Lignin biodegradation generates several value-added products, viz. vanillin, catechol, etc. Lignin and its products also have various industrial and therapeutic applications. The understanding, optimization and scale-up of the ligninolytic enzyme system may provide new vistas for optimal utilization of the lignin to create desirable value-added products.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Balaes TP, Ungureanu CV, Mardari C, Tănase C (2017) Ligninolytic enzyme system in ecological adaptation of lignicolous macrofungi. Appl Ecol Environ Res 15(1):207–224

    Article  Google Scholar 

  • Blanchette RA (1995) Delignification by wood-decay fungi. Annu Rev Phytopathol 29:381–398

    Article  Google Scholar 

  • Bonnen AM, Anton LH, Orth AB (1994) Lignin-degrading enzymes of the commercial button mushroom, Agaricus bisporus. Appl Environ Microbiol 3:960–965

    Google Scholar 

  • Boominathan K, Reddy CA (1992) Fungal degradation of lignin. In: Arora DK, Elander RP, Mukerji KG (eds) Handbook of applied mycology, vol 4: Fungal Biotechnology. Marcel Dekker, NewYork, pp 763–822

    Google Scholar 

  • Buswell JA, Odier E (1987) Lignin biodegradation. CRC Crit Rev Biotechnol 6:1–60

    Article  CAS  Google Scholar 

  • Cardona CA, Sánchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98(12):2415–2457

    Article  CAS  PubMed  Google Scholar 

  • Chefetz B, Chen Y, Hadar Y (1998) Purification and characterization of laccase from Chaetomium thermophilium and its role in humification. Appl Environ Microbiol 64(9):3175–3179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Claus H (2004) Laccases: structure, reactions, distribution. Micron 35:93–96

    Article  CAS  PubMed  Google Scholar 

  • Colpa DI, Fraaije MW, Van Bloois E (2014) DyP-type peroxidases: a promising and versatile class of enzymes. J Ind Microbiol Biotechnol 41:1–7

    Article  CAS  PubMed  Google Scholar 

  • Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1(1):36–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dedeyan B, Klonowska A, Tagger S, Tron T, Iacazio G, Gil G, Le Petit J (2000) Biochemical and molecular characterization of a laccase from Marasmius quercophilus. Appl Environ Microbiol 66(3):925–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggert C, Temp U, Eriksson KE (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62(4):1151–1158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farnet AM, Criquet S, Cigna M, Gil G, Ferre E (2004) Purification of a laccase from Marasmius quercophilus induced with ferulic acid: reactivity towards natural and xenobiotic aromatic compounds. Enzym Microb Technol 34(6):549–554

    Article  CAS  Google Scholar 

  • Fritsche W, Hofrichter M (2000) Aerobic degradation by microorganisms biotechnology. In: Klein J (ed) Environment processes II, vol 11b. Wiley-VCH, Weinheim, pp 145–155

    Google Scholar 

  • Glenn JK, Gold MH (1983) Decolorization of several polymeric dyes by the lignin degrading basidiomycetes Phanerochaete chryosporium. Appl Environ Microbiol 45:1741–1747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gold MH, Youngs HL, Gelpke MDS (2000) Manganese peroxidase. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 37. Marcel Dekker, Inc, New York, pp 559–586

    Google Scholar 

  • Gonzalo GD, Colpa DI, Habibb MHM, Fraaij MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119

    Article  CAS  PubMed  Google Scholar 

  • Hakulinen N, Kiiskinen LL, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen (2002) Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Biol 9(8):601–605

    CAS  PubMed  Google Scholar 

  • Hariharan S, Nambisan P (2013) Optimization of lignin peroxidase, manganese peroxidase, and lac production from Ganoderma lucidum under solid state fermentation of pineapple leaf. BioResources 8(1):250–271

    Google Scholar 

  • Hatakka A (1994) Lignin modifying enzymes from selected white rot fungi production and role in lignin degradation. FEMS Microbiol Rev 13:120–135

    Article  Google Scholar 

  • He J, Ye X, Ling Q, Dong L (2014) Enhanced production of an acid-tolerant laccase by cultivation of Armillariella tabescens. J Chem Pharm Res 6(1):240–245

    Google Scholar 

  • Jager A, Croan S, Kirk TK (1985) Production of ligninases and degradation of lignin in agitated submerged cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 50(5):1274–1278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalmi E, Ya H, Kalyoncu F, Pazarba B, Koçyi A (2008) Ligninolytic enzyme activities in mycelium of some wild and commercial mushrooms. Afr J Biotechnol 7(23):4314–4320

    Google Scholar 

  • Kent T, Kirk TK, Farell RL (1987) “Enzymatic combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  Google Scholar 

  • Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44(2):77–87

    Article  CAS  PubMed  Google Scholar 

  • Kuhad RC, Singh A, Ericsson KEL (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol 57:45125

    Google Scholar 

  • Kukkola EM, Koutaniemi S, Gustafsson EPM, Karhunen P, Lundell TK, Saranpaa P, Kilpela I, Teeri TH, Fagerstedt CV (2004) The dibenzodioxocin lignin substructure is abundant in the inner part of the secondary wall in Norway spruce and silver birch xylem. Planta 218:497–500

    Article  CAS  PubMed  Google Scholar 

  • Kuwahara M, Glenn JK, Morganm MA, Gold MH (1984) Separation and characterization of two extracellular H2O2 dependant oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS lett 169:47–250

    Article  Google Scholar 

  • Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtas-Wasilewska M, Cho NS, Hofrichter M, Rogalski J (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27(2–3):175–185

    Article  CAS  PubMed  Google Scholar 

  • Leonowicz A, Cho NM, Luterek J, Wilkolaza A, Wojtas–Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Royalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Yang HY, Kun W, Liu X (2016) Structural modification of hemicelluloses and lignin based on the biorefinery process with white-rot fungal. Carbohydr Polym 153:7–13

    Article  CAS  PubMed  Google Scholar 

  • Maciel MM, Castro Silva A, Ribeiro CTH (2010) Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: a review. Electron J Biotechnol 13(6):14–15

    Google Scholar 

  • Madhavi V, Lele SS (2009) Laccase: properties and applications. BioResources 4(4):1694–1717

    Google Scholar 

  • Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, Río JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8(3):195–204

    PubMed  Google Scholar 

  • Memić M, Vrtačnik M, Boh B, Pohleven F, Mahmutović O (2017) Biodegradation of PAHs by ligninolytic fungi Hypoxylon fragiforme and Coniophora puteana. Polycy Aroma Comp 2017. https://doi.org/10.1080/10406638.2017.1392326

  • Papinutti L, Martınez MJ (2006) Production and characterization of laccase and manganese peroxidase from the ligninolytic fungus Fomes sclerodermeus. J Chem Technol Biotechnol 81:1064–1070

    Article  CAS  Google Scholar 

  • Pointing SB, Pelling AL, Smith GJD, Hyde KD, Reddy AC (2005) Screening of basidiomycetes and xylariaceous fungi for lignin peroxidase and laccase gene-specific sequences. Mycol Res 109(1):115–124

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy K (1993) Proceedings of a short term training course on ligninase and its biotechnological applications held at Department of Environmental Sciences, Tamilnadu Agricultural University, Coimbatore, India

    Google Scholar 

  • Rana R, Nanda S, Meda V, Dalai AK, Kozinski JA (2018) A review of lignin chemistry and its biorefining conversion technologies. J Biochem Eng Bioprocess Technol 1:2

    Google Scholar 

  • Sack U, Hofrichter M, Fritsche W (1997) Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii. FEMS Microbiol Lett 152(2):227–234

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker HE, Leisola MA (1990) Degradation of lignin by Phanerochaete chrysosporium. J Biotechnol 13:101–109

    Article  Google Scholar 

  • Sixta H, Süss HU, Potthast A, Schwanninger M, Krotscheck AW (2006) Pulp bleaching: sections 7.1–7.3. 5. Handbook of pulp. pp 609–708

    Google Scholar 

  • Snajdr J, Baldrian P (2007) Temperature affects the production, activity and stability of ligninolytic enzymes in Pleurotus ostreatus and Trametes versicolor. Folia Microbiol (Praha) 52(5):498–502

    Article  CAS  Google Scholar 

  • Su Y, Yu X, Sun Y, Wang G, Chen H, Chen G (2018) Evaluation of screened lignin-degrading fungi for the biological pretreatment of corn stover. Sci Rep 8:5385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uzan E, Nousiainen P, Balland V, Sipila J, Piumi F, Navarro D, Asther M, Record E, Lomascolo A (2010) Jun high redox potential laccases from the ligninolytic fungi Pycnoporus coccineus and Pycnoporus sanguineus suitable for white biotechnology: from gene cloning to enzyme characterization and applications. J Appl Microbiol 108(6):2199–2213

    CAS  PubMed  Google Scholar 

  • Van Bloois E, Torres Pazmiño DE, Winter RT, Fraaije MW (2010) A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl Microbiol Biotechnol 86:1419–1430

    Google Scholar 

  • Voeller K, Kozliak E, Kubátová A, Yao B, Ji Y, Asina F, Brzonova I (2016) Biodegradation of lignin by fungi, bacteria and laccases. Bioresour Technol 220:414–424

    Article  CAS  PubMed  Google Scholar 

  • Ward G, Hadar Y, Dosoretz CG (2004) The biodegradation of lignocellulose by white rot fungi. In: Arora DK (ed) Fungal biotechnology in agricultural, food and environmental application. Marcel Dekkar, Inc, New York, pp 393–406

    Google Scholar 

  • Zámocký M, Hofbauer S, Schaffner I, Gasselhuber B, Nicolussi A, Soudi M, Pirker KF, Furtmüller PG, Obinger C (2015) Independent evolution of four heme peroxidase superfamilies. Arch Biochem Biophys 574:108–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Znameroski EA, Coradetti ST, Roche CM, Tsai JC, Iavarone AT, Cate JHD, Glass NL (2012) Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. PNAS 109(16):6012–6017

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jha, H. (2019). Fungal Diversity and Enzymes Involved in Lignin Degradation. In: Naraian, R. (eds) Mycodegradation of Lignocelluloses. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-23834-6_3

Download citation

Publish with us

Policies and ethics