Skip to main content

Basic Mechanism of Lignocellulose Mycodegradation

  • Chapter
  • First Online:
Mycodegradation of Lignocelluloses

Part of the book series: Fungal Biology ((FUNGBIO))

  • 386 Accesses

Abstract

Lignocelluloses are highly composite polymeric material structurally and integrally composed with several repeating units of cellulose, hemicellulose, and lignin. These are abundant in nature particularly in wood, grass, agricultural, and forestry waste and have a potential of bioconversion into valuable metabolites. Sometimes, the vast amount of these lignocelluloses create big environmental issues when either thrown or burnt negligently. Thus, rather than throwing them uselessly in surrounding environment, they may be microbially processed for bioconversion into useful products. A broad group of microorganisms including fungi, bacteria, and algae have versatile skill to degrade lignocelluloses by yielding a variety of valuable products. The fungi are known to be most potent because of their excellent enzymatic system and ability to degrade lignocellulosic materials. The synergistic action of multiple enzymes such as laccase, peroxidase, endoxylanase, endoglucanase, exoglucanase, β-xylosidase, and β-glucosidases converts lignocellulosic complexes into monomer forms to avail nutrients towards fungal mycelia. These enzymes have distinct catalytic functions that attacks on the complex structure of lignocelluloses and consequently yields the simpler metabolites. In response, a variety of fungal species produce a cluster of metabolic products beneficial in human appliances. The present chapter summarizes the clear explanations focusing on the basic mechanism of lignocellulosic conversion into their monomeric forms. The present chapter mainly focus on various aspect of efficient biodegradation and bioconversion of lignocelluloses with a sustainable approach to proceed lignocellulose material into value added forms. The important multi events during the mycodegradation of lignocelluloses including hemicellulolysis, cellulolysis, and ligninolysis are elaborated in detail in separate sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aehle W (2007) Enzymes in industry: production and applications, 3th edn. Wiley, Hoboken, NJ, pp 314–320

    Book  Google Scholar 

  • Akhtar M, Attridge MC, Myers GC, Kirk TK, Blanchette RA (1992) Biomechanical pulping of loblolly pine with different strains of the white rot fungus Ceriporiopsis subvermispora. Tech Asso Pulp Pap Ind 75:105–109

    CAS  Google Scholar 

  • Akhtar M, Blanchette RA, Kirk TK (1997) Fungal delignification and biomechanical pulping of wood. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol 57. Springer, Berlin, pp 160–193

    Google Scholar 

  • Anand D, Yadav S, Yadav D (2018) Screening of potential xylanase producing fungal strains under solid state fermentation condition. Int J Biol Res 3:348–354

    Google Scholar 

  • Bajpai P (2014) Microbial xylanolytic systems and their properties. In: Xylanolytic enzymes, pp 19–36

    Google Scholar 

  • Bajpai P (2016) Structure of lignocellulosic biomass. In: Pretreatment of lignocellulosic biomass for biofuel production. Springer Briefs in Green Chem Sustain, pp 7–12

    Google Scholar 

  • Baldrian P (2006) Fungal laccases occurence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  PubMed  Google Scholar 

  • Bandara AR, Karunarathna SC, Mortimer PE, Hyde KD, Khan S, Kakumyan P, Xu J (2017) First successful domestication and determination of nutritional and antioxidant properties of the red ear mushroom Auricularia thailandica (Auriculariales, Basidiomycota). Mycol Prog 16:1029–1039

    Article  Google Scholar 

  • Behrendt CJ, Blanchette RA (1997) Biological processing of pine logs for pulp and paper production with Phlebiopsis gigantean. Appl Environ Microbiol 63:1995–2000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berlin A, Maximenko V, Gilkes N, Saddler J (2007) Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng 97:287–296

    Article  CAS  PubMed  Google Scholar 

  • Bertonha LC, Neto ML, Garcia JAA, Vieira TF, Castoldi R, Bracht A, Peralta RM (2018) Screening of Fusarium sp. for xylan and cellulose hydrolyzing enzymes and perspectives for the saccharification of delignified sugarcane bagasse. Biocatal Agric Biotechnol 16:385–389

    Article  Google Scholar 

  • Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759

    Article  CAS  PubMed  Google Scholar 

  • Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290

    Article  CAS  Google Scholar 

  • Biely P (1993) Biochemical aspects of the production of microbial hemicellulases. In: Cougland MP, Hazlewood GP (eds) Hemicelluloses and hemicellulases. Portland Press, London, pp 29–52

    Google Scholar 

  • Binod P, Janu KU, Sindhu R, Pandey A (2011) Hydrolysis of lignocellulosic biomass for bioethanol production. In: Ashok P, Ricke LC, Steven C (eds) Biofuels: alternative feedstock’s and conversion processes. Elsevier Inc, Burlington, MA, pp 229–250

    Chapter  Google Scholar 

  • Bollag JM, Leonowicz A (1984) Comparative studies of extracellular fungal laccases. Appl Environ Microbiol 48:849–854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bosetto A, Justo PI, Zanardi B, Venzon SS, Graciano L, Santos EL, Simao RCG (2016) Research progress concerning fungal and bacterial β-xylosidases. Appl Biochem Biotechnol 178:766–795

    Article  CAS  PubMed  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238

    Article  CAS  Google Scholar 

  • Champagne P (2007) Feasibility of producing bio-ethanol from waste residues: a Canadian perspective feasibility of producing bio-ethanol from waste residues in Canada. Resour Conserv Recycl 44:225–234

    Google Scholar 

  • Chen H (2014) Biological fundamentals for the biotechnology of lignocellulose. In: Biotechnology of lignocellulose: theory and practice, pp 73–141

    Google Scholar 

  • Chen W, Zhong L, Peng X, Lin J, Sun R (2014) Xylan-type hemicelluloses supported terpyridine-palladium (II) complex as an efficient and recyclable catalyst for Suzuki–Miyaura reaction. Cellulose 21:125–137

    Article  CAS  Google Scholar 

  • Chivero ET, Mutukumira AN, Zvauya R (2001) Partial purification and characterisation of a xylanase enzyme produced by a microorganism isolated from selected indigenous fruits of Zimbabwe. Food Chem 72:179–185

    Article  CAS  Google Scholar 

  • Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150

    Article  CAS  PubMed  Google Scholar 

  • Clutterbuck AJ (1990) The genetics of conidiophore pigmentation in Aspergillus nidulans. J Gen Microbiol 136:1731–1738

    Article  CAS  PubMed  Google Scholar 

  • Colavolpe MB, Alberto E (2014) Cultivation requirements and substrate degradation of the edible mushroom Gymnopilus pampeanus-A novel species for mushroom cultivation. Sci Hortic 180:161–166

    Article  CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families an extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  PubMed  Google Scholar 

  • Conejo-Saucedo U, Cano-Camacho H, Villa-Rivera MG, Lara-Marquez A, Lopez-Romero E, Zavala-Paramo MG (2017) Protein homology modeling, docking, and phylogenetic analyses of an endo-1,4-β-xylanase GH11 of Colletotrichum lindemuthianum. Mycol Prog 16:577–591

    Article  Google Scholar 

  • Coral G, Arikan B, Unaldi MN, Guvenmez H (2002) Some properties of crude carboxymethyl cellulase of Aspergillus niger Z10 wild-type strain. Turk J Biochem 26:209–213

    CAS  Google Scholar 

  • Correa RCG, da Silva BP, Castoldi R, Kato CG, de Sa-Nakanishi AB, Peralta RA, de Souza CGM, Bracht A, Peralta RM (2016) Spent mushroom substrate of Pleurotus pulmonarius: a source of easily hydrolyzable lignocellulose. Folia Microbiol 61:439–448

    Article  CAS  Google Scholar 

  • Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JEM, Zimmer M (2015) Lignocellulose degradation mechanisms across the Tree of Life. Curr Opin Chem Biol 29:108–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017) Enzymatic degradation of lignin in soil: a review. Sustainability 9:2–18

    Google Scholar 

  • de Almeida MN, Falkoski DL, Guimaraes VM, de Rezendea ST (2019) Study of gamba grass as carbon source for cellulase production by Fusarium verticillioides and its application on sugarcane bagasse saccharification. Ind Crop Prod 133:33–43

    Article  CAS  Google Scholar 

  • De Groot PWJ, Visser J, Griensven LJLD, Schaap PJ (1998) Biochemical and molecular aspects of growth and fruiting of the edible mushroom Agaricus bisporus. Mycol Res 102:1297–1308

    Article  Google Scholar 

  • Dincer A, Telefoncu A (2006) Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads. J Mol Catal B Enzym 45:10–14

    Article  CAS  Google Scholar 

  • Dix NJ, Webster J (1995) Fungal ecology. Chapman and Hall, London, p 549

    Book  Google Scholar 

  • Dwivedi UN, Singh P, Pandey VP, Kumar A (2011) Structure–function relationship among bacterial, fungal and plant laccases. J Mol Catal B Enzym 68:117–128

    Article  CAS  Google Scholar 

  • Ebringerova A, Hromadkova Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67

    Article  CAS  Google Scholar 

  • Elisashvili V, Kachlishvili E, Penninckx M (2008) Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. J Ind Microbiol Biotechnol 35:1531–1538

    Article  CAS  PubMed  Google Scholar 

  • El-Zawawy WK, Ibrahim MM, Abdel-Fattah YR, Soliman NA, Mahmoud MM (2011) Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohydr Polym 84:865–871

    Article  CAS  Google Scholar 

  • Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV, Okoh AI (2017) Lignin peroxidase functionalities and prospective applications. Microbiologyopen 6:1–14

    Article  CAS  Google Scholar 

  • Fan L, Gharpuray MM, Lee YH (1987) Cellulose hydrolysis. Springer, Berlin

    Book  Google Scholar 

  • Fang GR, Li JJ, Cheng X, Cui ZJ (2012) Performance and spatial succession of a full-scale anaerobic plant treating high-concentration cassava bioethanol wastewater. J Microbiol Biotechnol 22:1148–1154

    Article  CAS  Google Scholar 

  • Faten MA, Abeer AE (2012) Enzyme activities of the marine-derived fungus Alternaria alternata cultivated on selected agricultural wastes. J Appl Biol Sci 7:39–46

    Google Scholar 

  • Fatokun EN, Nwodo UU, Okoh AI (2016) Classical optimization of cellulase and xylanase production by a marine Streptomyces species. Appl Sci 6:286

    Article  CAS  Google Scholar 

  • Ferraroni M, Myasoedova NM, Schmatchenko V, Leontievsky AA, Golovleva LA, Scozzafava A, Briganti F (2007) Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC Struct Biol 7:60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Festucci-Buselli RA, Otoni WC, Joshi CP (2007) Structure, organization, and functions of cellulose synthase complexes in higher plants. Braz J Plant Physiol 19:1–13

    Article  CAS  Google Scholar 

  • Fujii T, Fang X, Inoue H, Murakami K (2009) Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnol Biofuels 2:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Biorem J 3:1–25

    Article  CAS  Google Scholar 

  • Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9:2749–2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn (II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 242:329–341

    Article  CAS  PubMed  Google Scholar 

  • Golan G, Shallom D, Teplitsky A, Zaide G, Shulami S, Baasov T (2004) Crystal structures of Geobacillus stearothermophilus α-glucuronidase complexed with its substrate and products: mechanistic implications. J Biol Chem 279:3014–3024

    Article  CAS  PubMed  Google Scholar 

  • Gold MH, Youngs HL, Gelpke MD (2000) Manganese peroxidase. Met Ions Biol Syst 37:559–586

    CAS  PubMed  Google Scholar 

  • Goldbeck R, Ramos MM, Pereira GAG, Maugeri-Filho F (2013) Cellulase production from a new strain Acremonium strictum isolated from the Brazilian biome using different substrates. Bioresour Technol 128:797–803

    Article  CAS  PubMed  Google Scholar 

  • Graciano L, Correa JM, Gandra RF, Seixas FAV, Kadowaki MK, Sampaio SC, Silva JLC, Osaku CA, Simao RCG (2012) The cloning, expression, purification, characterization and modeled structure of Caulobacter crescentus b-Xylosidase I. World J Microbiol Biotechnol 28:2879–2888

    Article  CAS  PubMed  Google Scholar 

  • Guais O, Tourrasse O, Dourdoigne M, Parrou JL, Francois JM (2010) Characterization of the family GH54 α-L-arabinofuranosidases in Penicillium funiculosum, including a novel protein bearing a cellulose-binding domain. Appl Microbiol Biotechnol 87:1007–1021

    Article  CAS  PubMed  Google Scholar 

  • Guan GQ, Zhao PX, Zhao J, Wang MJ, Huo SH, Cui FJ, Jiang JX (2016) Production and partial characterization of an alkaline xylanase from a novel fungus Cladosporium oxysporum. Biomed Res Int 2016:1–7

    Google Scholar 

  • Gubernatorova TN, Dolgonosov BM (2010) Modeling the biodegradation of multicomponent organic matterin an aquatic environment: 3. Analysis of lignin degradation mechanisms. Water Resour 37:332–346

    Article  CAS  Google Scholar 

  • Halis R, Tan HR, Ashaari Z, Mohamad R (2012) Biomodification of kenaf chip using white rot fungi. Bioresources 7:984–987

    CAS  Google Scholar 

  • Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355

    Article  CAS  PubMed  Google Scholar 

  • Harley BS, Brodo PMA, Senior PJ (1988) Proceeding of royal society discussion meeting on utilisation of lignocellulosic wastes. Cambridge University Press, Cambridge

    Google Scholar 

  • Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A (2013) A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol 135:513–522

    Article  CAS  PubMed  Google Scholar 

  • Henriksson G, Nutt A, Henriksson H, Pettersson B, Stahlberg J, Johansson G, Pettersson G (1999) Endoglucanase 28 (Cel12A), a new Phanerochaete chrysosporium cellulase. Eur J Biochem 259:88–95

    Article  CAS  PubMed  Google Scholar 

  • Hoegger PJ, Kilaru S, James TY, Thacker JR, Kues U (2006) Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273:2308–2326

    Article  CAS  PubMed  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30:454–466

    Article  CAS  Google Scholar 

  • Hori C, Cullen D (2016) Prospects for bioprocess development basedon recent genome advances in lignocellulose degrading basidiomycetes. In: Schmoll M, Dattenbock C (eds) Gene expression systems in fungi: advancements and applications. Fungal Biol USA. Springer, Berlin, pp 161–181

    Chapter  Google Scholar 

  • Howard RR, Abotsi E, Renshurg JEL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2:602–619

    Article  CAS  Google Scholar 

  • Hu J, Arantes V, Saddler JN (2011) The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect. Biotechnol Biofuels 4:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal HMN, Asgher M, Ahmed I, Hussain S (2013) Media optimization for hyper-production of carboxymethyl cellulase using proximally analyzed agro-industrial residue with Trichoderma harzianum under SSF. Int J Agric Vet Med Sci 4:47–55

    Google Scholar 

  • Isroi, Millati R, Syamsiah S, Niklasson C, Cahyanto MN, Lundquist K (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. Bioresources 6:5224–5259

    Google Scholar 

  • Jacobsen SE, Wyman CE (2000) Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Appl Biochem Biotechnol 84:81–96

    Article  PubMed  Google Scholar 

  • Jeffries TW (1990) Biodegradation of lignin–carbohydrate complexes. Biodegradation 1:163–176

    Article  CAS  Google Scholar 

  • Jeffries TW (1994) Biodegradation of lignin and hemicelluloses. In: Ratledge C (ed) Biochemistry of microbial degradation. Kluwer, Dordrecht, pp 233–277

    Chapter  Google Scholar 

  • Jolivalt C, Raynal A, Caminade E, Kokel B, Le Goffic F, Mougin C (1999) Transformation of N′, N′-dimethyl-N-(hydroxyphenyl) ureas by laccase from the white rot fungus Trametes versicolor. Appl Microbiol Biotechnol 51:676–681

    Article  CAS  Google Scholar 

  • Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sust Energ Rev 33:188–203

    Article  CAS  Google Scholar 

  • Kaarik A (1965) The identification of the mycelia of wood decay fungi by their oxidation reactions with phenolic compounds. Stud For Suec 31:1–79

    Google Scholar 

  • Kabel MA, Jurak E, Makela MR, de Vries RP (2017) Occurrence and function of enzymes for lignocelluloses degradation in commercial Agaricus bisporus cultivation. Appl Microbiol Biotechnol 101:4363–4369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kameshwar AKS, Qin W (2016) Lignin degrading fungal enzymes. In: Fang Z, Smith RL (eds) Production of biofuels and chemicals from lignin. Biofuels and biorefineries, vol 6. Springer, Singapore, pp 81–130

    Chapter  Google Scholar 

  • Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci U S A 81:2280–2284

    Article  PubMed  PubMed Central  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chemie Int Eds 44:3358–3393

    Article  CAS  Google Scholar 

  • Knob A, Terrasan CRF, Carmona EC (2010) β-Xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 26:389–407

    Article  CAS  Google Scholar 

  • Kogo T, Yoshida Y, Kogane K, Matsumoto H, Watanabe T, Ogihara J, Kasum T (2017) Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source. Bioresour Technol 233:67–73

    Article  CAS  PubMed  Google Scholar 

  • Kozlova LV, Gorshkov OV, Mokshina NE, Gorshkova TA (2015) Differential expression of a-L-arabinofuranosidases during maize (Zea mays L.) root elongation. Planta 241:1159–1172

    Article  CAS  PubMed  Google Scholar 

  • Kubicek CP (2012a) Fungi and lignocellulosic biomass. Wiley, Ames, IA

    Book  Google Scholar 

  • Kubicek CP (2012b) The plant biomass. In: Kubicek CP (ed) Fungi and lignocellulosic biomass. Wiley-Blackwell, Oxford, pp 1–28

    Chapter  Google Scholar 

  • Kuhad RC, Singh A, Eriksson KEL (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol 57:45–125

    CAS  PubMed  Google Scholar 

  • Kuila A, Sharma V, Garlapati VK, Singh A, Roy L (2016) Present status on enzymatic hydrolysis of lignocellulosic biomass for bioethanol production. Adv Biofeedstocks Biofuels 1:85

    CAS  Google Scholar 

  • Kulasinski K, Salmen L, Derome D, Carmeliet J (2016) Moisture adsorption of glucomannan and xylan hemicelluloses. Cellulose 23:1629–1637

    Article  CAS  Google Scholar 

  • Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Wyman CE (2009) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25:302–314

    Article  CAS  PubMed  Google Scholar 

  • Kumar G, Bakonyi P, Periyasamy S, Kim SH, Nemestothy N (2015) Lignocellulose biohydrogen: practical challenges and recent progress. Renew Sust Energ Rev 44:728–737

    Article  CAS  Google Scholar 

  • Lam KL, Kaiwei S, Xiyang W, Shuze T, Xiaohui S, Kwan HS, Cheunga PCK (2018) The diploid genome of the only sclerotia-forming wild-type species in the genus Pleurotus-Pleurotus tuber-regium—provides insights into the mechanism of its biomass conversion from lignocellulose substrates. J Biotechnol 283:22–27

    Article  CAS  PubMed  Google Scholar 

  • Latha GM, Srinivas P, Muralikrishna G (2007) Purification and characterization of ferulic acid esterase from malted finger millet (Eleusine coracana, Indaf-15). J Agric Food Chem 55:9704–9712

    Article  CAS  PubMed  Google Scholar 

  • Lavanya D, Kulkarni PK, Dixit M, Raavi PK, Krishna LNV (2011) Sources of cellulose and their applications-a review. Int J Drug Formul Res 2:19–38

    Google Scholar 

  • Leonowicz A, Szklarz G, Wojtas WM (1985) The effect of fungal laccase on fractionated lignosylphonates (Peritan Na). Phytochemistry 24:393–396

    Article  CAS  Google Scholar 

  • Leschine SB (1995) Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399–426

    Article  CAS  PubMed  Google Scholar 

  • Li PP, Wang XJ, Cui ZJ (2012) Survival and performance of two cellulose-degrading microbial systems inoculated into wheat straw-amended soil. J Microbiol Biotechnol 22:126–132

    Article  CAS  PubMed  Google Scholar 

  • Liao H, Li S, Wei Z, Shen O, Xu Y (2014) Insights into high-efficiency lignocellulolytic enzyme production by Penicillium oxalicum GZ-2 induced by a complex substrate. Biotechnol Biofuels 7:162

    Google Scholar 

  • Lombard V, Ramulu GH, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:490–495

    Article  CAS  Google Scholar 

  • Maayer PD, Brumm PJ, Mead DA, Cowan DA (2014) Comparative analysis of the Geobacillus hemicellulose utilization locus reveals a highly variable target for improved hemicellulolysis. BMC Genomics 15:836

    Article  PubMed  PubMed Central  Google Scholar 

  • MacDonald J, Suzuki H, Master ER (2012) Expression and regulation of genes encoding lignocellulose-degrading activity in the genus Phanerochaete. Appl Microbiol Biotechnol 94:339–351

    Article  CAS  PubMed  Google Scholar 

  • Madadi M, Abbas A (2017) Lignin degradation by fungal pretreatment: a review. J Plant Pathol Microbiol 8:2

    Google Scholar 

  • Mai C, Kues U, Militz H (2004) Biotechnology in the wood industry. Appl Microbiol Biotechnol 63:477–494

    Article  CAS  PubMed  Google Scholar 

  • Malayil S, Chanakya HN, Ashwath R (2016) Biogas digester liquid—a nutrient supplement for mushroom cultivation. Environ Nanotechnol Monit Manage 6:24–31

    Google Scholar 

  • Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1:105–114

    Article  CAS  Google Scholar 

  • Martinez AT (2002) Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzym Microb Technol 30:425–432

    Article  CAS  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J (2004) Genome sequence of the lignocellulose degradingfungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    Article  CAS  PubMed  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new function for an old enzyme. Phytochemistry 60:551–565

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra R, Aneja K (1990) An introduction to mycology. New Age International, New Delhi

    Google Scholar 

  • Menezes DB, Brazil OAV, Romanholo-Ferreira LF, Polizeli MLTM, Ruzene DS, Silva DP, Costa LP, Hernandez-Macedo ML (2017) Prospecting fungal ligninases using corncob lignocellulosic fractions. Cellulose 24:4355–4365

    Article  CAS  Google Scholar 

  • Meng X, Liu B, Xi C, Luo X, Yuan X, Wang X, Zhu W, Wang H, Cui Z (2018) Effect of pig manure on the chemical composition and microbial diversity during co-composting with spent mushroom substrate and rice husks. Bioresour Technol 251:22–30

    Article  CAS  PubMed  Google Scholar 

  • More SS, Renuka PS, Pruthvi K, Swetha M, Malini S, Veena SM (2011) Isolation, purification, and characterization of fungal laccase from Pleurotus sp. Enzyme Res 2011:1–7

    Article  CAS  Google Scholar 

  • Mrudula S, Murugammal R (2011) Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz J Microbiol 42:1119–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mussatto SI, Teixeira JA (2010) Lignocellulose as raw material in fermentation processes. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Spain, pp 897–903

    Google Scholar 

  • Naika GS, Kaul P, Prakash VJ (2007) Purification and characterization of a new endoglucanase from Aspergillus aculeatus. Agric Food Chem 55:7566–7572

    Article  CAS  Google Scholar 

  • Nam KH, Sung MW, Hwang KY (2010) Structural insights into the substrate recognition properties of b-glucosidase. Biochem Biophys Res Commun 391:1131–1135

    Article  CAS  PubMed  Google Scholar 

  • Naraian R, Singh D, Verma A, Garg SK (2010) Studies on in vitro degradability of mixed crude enzyme extracts produced from Pleurotus sp. J Environ Biol 31:945–951

    PubMed  Google Scholar 

  • Numan MT, Bhosle NB (2006) a-L-Arabinofuranosidases: the potential applications in biotechnology. J Ind Microbiol Biotechnol 33:247–260

    Article  CAS  PubMed  Google Scholar 

  • Nurizzo D, Nagy T, Gilbert HJ, Davies GJ (2002) The structural basis for catalysis and specificity of the Pseudomonas cellulosa α-glucuronidase, GlcA67A. Structure 10:547–556

    Article  CAS  PubMed  Google Scholar 

  • Okeke BC, Lu J (2011) Characterization of a defined cellulolytic and xylanolytic bacterial consortium for bioprocessing of cellulose and hemicelluloses. Appl Biochem Biotechnol 163:869–881

    Article  CAS  PubMed  Google Scholar 

  • Parani K, Eyini M (2010) Effect of co-fungal treatment on biodegradation of coffee pulp waste in solid state fermentation. Asian J Exp Biol Sci 1:352–359

    CAS  Google Scholar 

  • Paszczynski A, Huynh VB, Crawford R (1985) Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol Lett 29:37–41

    Article  CAS  Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  PubMed  Google Scholar 

  • Pramanik K, Sahu S (2017) Biological treatment of lignocellulosic biomass to bioethanol. Adv Biotechnol Microbiol 5:1–3

    Google Scholar 

  • Qi M, Wang P, Selinger LB, Yanke LJ, Forster RJ, McAllister TA (2011) Isolation and characterization of a ferulic acid esterase (Fae1A) from the rumen fungus Anaeromyces mucronatus. J Appl Microbiol 110:1341–1350

    Article  CAS  PubMed  Google Scholar 

  • Rashad FM, El-Kattan MH, Fathy HM, El-Fattah ABD, El-Tohamy DA, Farahat MAA (2019) Recycling of agro-wastes for Ganoderma lucidum mushroom production and Ganoderma post mushroom substrate as soil amendment. Waste Manag 88:147–159

    Article  CAS  PubMed  Google Scholar 

  • Rennie EA, Scheller HV (2014) Xylan biosynthesis. Curr Opin Biotechnol 26:100–107

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo de Souza W (2013) Chapter 9: microbial degradation of lignocellulosic biomass. In: Sustainable degradation of lignocellulosic biomass-techniques, applications and commercialization. pp 207–247

    Google Scholar 

  • Rothschild N, Levkowitz A, Hadar Y, Dosoretz CG (1999) Manganese deficiency can replace high oxygen levels needed for lignin peroxidase formation by Phanerochaete chrysosporium. Appl Environ Microbiol 65:483–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryden P, Efthymiou MN, Tindyebwa TAM, Elliston A, Wilson DR, Waldron KW, Malakar PK (2017) Bioethanol production from spent mushroom compost derived from chaff of millet and sorghum. Biotechnol Biofuels 10:195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. Br Microbiol Res J 3:235–258

    Article  CAS  Google Scholar 

  • Saha BC (2004) Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides. Process Biochem 39:1871–1876

    Article  CAS  Google Scholar 

  • Sajith S, Priji P, Sreedevi S, Benjamin S (2016) An overview on fungal cellulases with an industrial perspective. J Nutr Food Sci 6:1–10

    Google Scholar 

  • Salmen L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review cost action E35 2004–2008: wood machining-micromechanics and fracture. Holzforschung 63:121–129

    Article  CAS  Google Scholar 

  • Salvachua D, Prieto A, Lopez-Abelairas M, Lu-Chau T, Martınez A, Martınez AJ (2011) Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol 102:7500–7506

    Article  CAS  PubMed  Google Scholar 

  • Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  CAS  PubMed  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  PubMed  Google Scholar 

  • Sedlmeyer FB (2011) Xylan as by-product of biorefineries: characteristics and potential use for food applications. Food Hydrocoll 25:1891–1898

    Article  CAS  Google Scholar 

  • Segato F, Damasio ARL, de Lucas RC (2014) Genome analyses highlight the different biological roles of cellulases. Microbiol Mol Biol Rev 78:588–613

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahzadi T, Anwar Z, Iqbal Z, Anjum A, Aqil T, Bakhtawar, Afzal A, Kamran M, Mehmood S, Irshad M (2014) Induced production of exoglucanase, and β-glucosidase from fungal co-culture of T. viride and G. lucidum. Adv Biosci Biotechnol 5:426–433

    Article  CAS  Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  CAS  PubMed  Google Scholar 

  • Shruti, Sharma A, Malik DK (2015) Lignocellulose biomass degradation by microbial consortium isolated from harvested rice field. Int J Curr Microbiol App Sci 4:274–280

    Google Scholar 

  • Singh S, Harms H, Schlosser D (2014) Screening of ecologically diverse fungi for their potential to pretreat lignocellulosic bioenergy feedstock. Appl Microbiol Biotechnol 98:3355–3370

    Article  CAS  PubMed  Google Scholar 

  • Sjostrom E (1993) The structure of wood. In: Wood chem, pp 1–20

    Google Scholar 

  • Sohpal VK, Dey A, Singh A (2010) Investigate of process parameters on xylanase enzyme activity in Melanocarpus albomyces batch culture. In: Proc World Congr Eng London, UK

    Google Scholar 

  • Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2605

    Article  CAS  PubMed  Google Scholar 

  • Sorensen HR, Jorgensen CT, Hansen CH, Jorgensen CI, Pedersen S, Meyer AS (2006) A novel GH43 α-L-arabinofuranosidase from Humicola insolens: mode of action and synergy with GH51 α-L-arabinofuranosidases on wheat arabinoxylan. Appl Microbiol Biotechnol 73:850–861

    Article  CAS  PubMed  Google Scholar 

  • Srebotnik E, Messner KA (1994) Simple method that uses differential staining and light microscopy to assess the selectivity of wood delignification by white rot fungi. Appl Environ Microbiol 60:1383–1386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2002) Degradation of humic acids by the litter decomposing basidiomycete Collybia dryophila. Appl Environ Microbiol 68:3442–3448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbach D, Kruse A, Sauer J (2017) Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production—a review. Biomass Convers Biorefin 7:247–274

    Article  CAS  Google Scholar 

  • Sternberg D, Vijayakumar P, Reese ET (1977) β-Glucosidase-microbial production and effect on enzymatic hydrolysis of cellulose. Can J Microbiol 23:139–147

    Article  CAS  PubMed  Google Scholar 

  • Taherzadeh-Ghahfarokhi MPR, Mokhtarani B (2019) Optimizing the combination of conventional carbonaceous additives of culture media to produce lignocellulose-degrading enzymes by Trichoderma reesei in solid state fermentation of agricultural residues. Renew Energy 131:946–955

    Article  CAS  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Till M, Goldstone DC, Attwood GT, Moon CD, Kelly WJ, Arcus VL (2013) Structure and function of an acetyl xylan esterase (Est2A) from the rumen bacterium Butyrivibrio proteoclasticus. Proteins 81:911–917

    Article  CAS  PubMed  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itavaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72:169–183

    Article  CAS  Google Scholar 

  • Valaskova V, Snajdr J, Bittner B, Hofrichter M (2007) Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest. Soil Biol Biochem 39:2651–2660

    Article  CAS  Google Scholar 

  • Verma D, Satyanarayana T (2012) Cloning, expression and applicability of thermo-alkali-stable xylanase of Geobacillus thermoleovorans in generating xylooligosaccharides from agro-residues. Bioresour Technol 107:333–338

    Article  CAS  PubMed  Google Scholar 

  • Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846

    Article  CAS  Google Scholar 

  • Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447–1457

    Article  CAS  PubMed  Google Scholar 

  • Wang QF, Niua LL, Jiao J, Guo N, Zang YP, Gai QY, Fuab YJ (2017) Degradation of lignin in birch sawdust treated by a novel Myrothecium verrucaria coupled with ultrasound assistance. Bioresour Technol 244:969–974

    Article  CAS  PubMed  Google Scholar 

  • Wanmolee W, Sornlake W, Rattanaphan N, Suwannarangsee S, Laosiripojana N, Champreda V (2016) Biochemical characterization and synergism of cellulolytic enzyme system from Chaetomium globosum on rice straw saccharification. BMC Biotechnol 16:82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1989) Oxidative cleavage of a phenolic diarylpropane lignin model dimer by manganese peroxidase from Phanerochaete chrysosporium. Biochemist 28:6017–6023

    Article  CAS  Google Scholar 

  • Wen Z, Liao W, Chen S (2004) Hydrolysis of animal manure lignocellulosics for reducing sugar production. Bioresour Technol 91:31–39

    Article  CAS  PubMed  Google Scholar 

  • Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong DW (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209

    Article  CAS  PubMed  Google Scholar 

  • Wood TM (1985) Properties of cellulolytic enzyme systems. Biochem Soc Trans 13:407–410

    Article  CAS  PubMed  Google Scholar 

  • Wood TM (1989) Mechanisms of cellulose degradation by enzymes from aerobic and anaerobic fungi. In: Coughlan MP (ed) Enzyme systems for lignocellulose degradation. Elsevier Appl Sci, London, pp 17–35

    Google Scholar 

  • Xiao LP, Shi ZJ, Bai YY, Wang W, Zhang XM, Sun RC (2013) Biodegradation of lignocellulose by white-rot fungi: structural characterization of water-soluble hemicelluloses. Bioenergy Res 6:1154–1164

    Article  CAS  Google Scholar 

  • Xiao Q, Yu H, Zhang J, Lia F, Li C, Zhang X, Ma F (2019) The potential of cottonseed hull as biorefinery substrate after biopretreatment by Pleurotus ostreatus and the mechanism analysis based on comparative proteomics. Ind Crop Prod 130:151–161

    Article  CAS  Google Scholar 

  • Xie C, Gong W, Yan L, Zhu Z, Hu Z, Peng Y (2017) Biodegradation of ramie stalk by Flammulina velutipes: mushroom production and substrate utilization. AMB Express 7:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong S, Martin C, Eilertsen L, Wei M, Myronycheva O, Larsson SH, Lestander TA, Atterhem L, Jonsson LJ (2019) Energy-efficient substrate pasteurisation for combined production of shiitake mushroom (Lentinula edodes) and bioethanol. Bioresour Technol 274:65–72

    Article  CAS  PubMed  Google Scholar 

  • Xu F (1996) Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemist 35:7608–7614

    Article  CAS  Google Scholar 

  • Xu X, Hu Y, Quan L (2014) Production of bioactive polysaccharides by Inonotus obliquus under submerged fermentation supplemented with lignocellulosic biomass and their antioxidant activity. Bioprocess Biosyst Eng 37:2483–2492

    Article  CAS  PubMed  Google Scholar 

  • Yang P, Zhang H, Cao L, Zheng Z, Mu D, Jiang S, Cheng J (2018) Combining sestc engineered A. niger with sestc engineered S. cerevisiae to produce rice straw ethanol via step-by-step and in situ saccharification and fermentation. 3 Biotech 8:12

    Article  PubMed  Google Scholar 

  • Yoshida H (1883) Chemistry of lacquer (Urishi) part 1. J Chem Soc 43:472–486

    Article  CAS  Google Scholar 

  • Youn HD, Hah YC, Kang SO (1995) Role of laccase in lignin degradation by white-rot fungi. FEMS Microbiol Lett 132:183–188

    Article  CAS  Google Scholar 

  • Zhang X, Tu M, Paice MG (2011) Routes to potential bioproducts from lignocellulosic biomass lignin and hemicelluloses. Bioenergy Res 4:246–257

    Article  Google Scholar 

  • Zhao X, Huang X, Yao J, Zhou Y, Jia R (2015) Fungal growth and manganese peroxidase production in a deep tray solid-state bioreactor, and in vitro decolorization of poly r-478 by MnP. J Microbiol Biotechnol 25:803–813

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gautam, R.L., Singh, S., Kumari, S., Gupta, A., Naraian, R. (2019). Basic Mechanism of Lignocellulose Mycodegradation. In: Naraian, R. (eds) Mycodegradation of Lignocelluloses. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-23834-6_1

Download citation

Publish with us

Policies and ethics