Skip to main content

P53 and Apoptosis in the Drosophila Model

  • Chapter
  • First Online:
The Drosophila Model in Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1167))

Abstract

Human P53 (HsP53) is the most frequently mutated gene associated with cancers. Despite heightened research interest over the last four decades, a clear picture of how wild type HsP53 functions as the guardian against malignant transformation remains elusive. Studying the ortholog of P53 in the genetic model organism Drosophila melanogaster (DmP53) has revealed many interesting insights. This chapter focuses on recent findings that have shed light on how DmP53 -mediated apoptosis plays an important role in maintaining genome integrity, and how the immediate output of activated DmP53 is determined by the epigenetic landscape of individual cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levine AJ, Oren M (2009 Oct) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9(10):749–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lane D, Levine A (2010) P53 Research: The past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2:1–10

    Google Scholar 

  3. Botcheva K (2014) P53 binding to human genome: crowd control navigation in chromatin context. Front Genet 5:1–7

    Article  CAS  Google Scholar 

  4. Menendez D, Inga A, Resnick MA (2009) The expanding universe of p53 targets. Nat Rev Cancer 9(10):724–737

    Article  CAS  PubMed  Google Scholar 

  5. Kastenhuber ER, Lowe SW (2017) Putting p53 in context. Cell 170(6):1062–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mollereau B, Ma D (2014) The p53 control of apoptosis and proliferation: lessons from Drosophila. Apoptosis 19:1421–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM (2000) Drosophila p53 binds a damage response element at the reaper locus. Cell 101(1):103–113

    Article  CAS  PubMed  Google Scholar 

  8. Ollmann M, Young LM, Di Como CJ, Karim F, Belvin M, Robertson S et al (2000) Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101(1):91–101

    Article  CAS  PubMed  Google Scholar 

  9. Jin S, Martinek S, Joo WS, Wortman JR, Mirkovic N, Sali A et al (2000) Identification and characterization of a p53 homologue in Drosophila melanogaster. Proc Natl Acad Sci 97(13):7301–7306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang B, Rotelli M, Dixon M, Calvi BR (2015) The function of Drosophila p53 isoforms in apoptosis. Cell Death Differ 22(12):2058–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marcel V, Sagne C, Hafsi H, Ma D, Olivier M, Hall J et al (2011) Biological functions of p53 isoforms through evolution: lessons from animal and cellular models. Cell Death Differ 44(12):1815–1824

    Article  CAS  Google Scholar 

  12. Dichtel-Danjoy M-L, Ma D, Dourlen P, Chatelain G, Napoletano F, Robin M et al (2013) Drosophila p53 isoforms differentially regulate apoptosis and apoptosis-induced proliferation. Cell Death Differ 20(1):108–116

    Article  CAS  PubMed  Google Scholar 

  13. Botcheva K, Mccorkle SR, Mccombie WR, Botcheva K, Mccorkle SR, Mccombie WR et al (2016) Distinct p53 genomic binding patterns in normal and cancer-derived human cells. Cell Cycle 10:4237–4249

    Google Scholar 

  14. Link N, Kurtz P, O’Neal M, Garcia-Hughes G, Abrams JM (2013) A p53 enhancer region regulates target genes through chromatin conformations in cis and in trans. Genes Dev 27(22):2433–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sogame N, Kim M, Abrams JM (2003) Drosophila p53 preserves genomic stability by regulating cell death. Proc Natl Acad Sci U S A 100(8):4696–4701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kurzhals RL, SW a T, Xie HB, Golic KG (2011) Chk2 and p53 are haploinsufficient with dependent and independent functions to eliminate cells after telomere loss. PLoS Genet 7(6):e1002103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brodsky MH, Weinert BT, Tsang G, Rong YS, McGinnis NM, Golic KG et al (2004) Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol Cell Biol 24(3):1219–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Der OH, Löhr F, Vogel V, Mäntele W, Dötsch V (2007) Structural evolution of C-terminal domains in the p53 family. EMBO J 26(14):3463–3473

    Article  CAS  Google Scholar 

  19. Mateo A-RF, Kessler Z, Jolliffe AK, McGovern O, Yu B, Nicolucci A et al (2016) The p53-like protein CEP-1 is required for meiotic Fidelity in C. elegans. Curr Biol 26(9):1148–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang Y, Lin N, Carroll PM, Chan G, Guan B, Xiao H et al (2008) Epigenetic blocking of an enhancer region controls irradiation-induced Proapoptotic gene expression in Drosophila embryos. Dev Cell 14(4):481–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Senbabaoglu Y, Schultz N, Miller ML, Ciriello G, Sander C, Aksoy BA (2013) Emerging landscape of oncogenic signatures across human cancers. Nat Genet 45(10):1127–1133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ahmad K, Golic KG (1998) The transmission of fragmented chromosomes in Drosophila melanogaster. Genetics 148(2):775–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Titen SWA, Golic KG (2008) Telomere loss provokes multiple pathways to apoptosis and produces genomic instability in Drosophila melanogaster. Genetics 180(4):1821–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mehrotra S, Maqbool SB, Kolpakas A, Murnen K, Calvi BR (2008) Endocycling cells do not apoptose in response to DNA rereplication genotoxic stress. Genes Dev 22(22):3158–3171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang B, Mehrotra S, Ng WL, Calvi BR (2014) Low levels of p53 protein and chromatin silencing of p53 target genes repress apoptosis in Drosophila Endocycling cells. PLoS Genet 10(9):e1004581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Tan Y, Yamada-Mabuchi M, Arya R, St Pierre S, Tang W, Tosa M et al (2011) Coordinated expression of cell death genes regulates neuroblast apoptosis. Development 138(11):2197–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin N, Li X, Cui K, Chepelev I, Tie F, Liu B et al (2011) A barrier-only boundary element delimits the formation of facultative heterochromatin in Drosophila melanogaster and vertebrates. Mol Cell Biol 31(13):2729–2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fogarty CE, Bergmann A (2015) The sound of silence: signaling by apoptotic cells. Curr Top Dev Biol 114:241–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ryoo HD, Gorenc T, Steller H (2004) Apoptotic cells can induce compensatory cell proliferation through the JNK and the wingless signaling pathways. Dev Cell 7(4):491–501

    Article  CAS  PubMed  Google Scholar 

  30. Diwanji N, Bergmann A (2018) An unexpected friend – ROS in apoptosis-induced compensatory proliferation: implications for regeneration and cancer. Semin Cell Dev Biol 80:74–82

    Article  CAS  PubMed  Google Scholar 

  31. Hassel C, Zhang B, Dixon M, Calvi BR (2014) Induction of endocycles represses apoptosis independently of differentiation and predisposes cells to genome instability. Development 141(1):112–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang C, Tintó SC, Li G, Lin N, Chung M, Moreno E et al (2015) An intergenic regulatory region mediates Drosophila Myc-induced apoptosis and blocks tissue hyperplasia. Oncogene 34(18):1–13

    Google Scholar 

  33. Montero L, Müller N, Gallant P (2008) Induction of apoptosis by Drosophila Myc. Genesis 46(2):104–111

    Article  CAS  PubMed  Google Scholar 

  34. Zhang W, Cohen SM (2013) The Hippo pathway acts via p53 and microRNAs to control proliferation and proapoptotic gene expression during tissue growth. Biol Open 2(8):822–828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Pujadas E, Feinberg APP (2012) Regulated noise in the epigenetic landscape of development and disease. Cell 148(6):1123–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447(7143):433–440

    Article  CAS  PubMed  Google Scholar 

  37. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7(1):21–33

    Article  CAS  PubMed  Google Scholar 

  38. Everett H, McFadden G (1999) Apoptosis: an innate immune response to virus infection. Trends Microbiol 7(4):160–165

    Article  CAS  PubMed  Google Scholar 

  39. Zhou L, Jiang G, Chan G, Santos CP, Severson DW, Xiao L (2005) Michelob_x is the missing inhibitor of apoptosis protein antagonist in mosquito genomes. EMBO Rep 6(8):769–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu B, Becnel JJ, Zhang Y, Zhou L (2011) Induction of reaper ortholog mx in mosquito midgut cells following baculovirus infection. Cell Death Differ 18(8):1337–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu B, Behura SK, Clem RJ, Schneemann A, Becnel J, Severson DW et al (2013) P53-mediated rapid induction of apoptosis conveys resistance to viral infection in Drosophila melanogaster. PLoS Pathog 9(2):e1003137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Belyi VA, Ak P, Markert E, Wang H, Hu W, Puzio-Kuter A et al (2009) The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol 2(6):a001198

    PubMed  Google Scholar 

  43. Wylie A, Jones AE, Brot AD, Lu WJ, Kurtz P, Moran JV et al (2016) P53 genes function to restrain mobile elements. Genes Dev 30(1):64–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wylie A, Jones AE, Abrams JM (2016) p53 in the game of transposons. BioEssays 38(11):1111–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Harris CR, Dewan A, Zupnick A, Normart R, Gabriel A, Prives C et al (2009) p53 responsive elements in human retrotransposons. Oncogene 28(44):3857–3865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lane DP, Cheok CF, Brown C, Madhumalar A, Ghadessy FJ, Verma C (2010) Mdm2 and p53 are highly conserved from placozoans to man. Cell Cycle 9(3):540–547

    Article  CAS  PubMed  Google Scholar 

  47. Lane DP, Verma C (2012) Mdm2 in evolution. Genes Cancer 3(3–4):320–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chakraborty R, Li Y, Zhou L, Golic KGKG (2015) Corp regulates P53 in Drosophila melanogaster via a negative feedback loop. PLoS Genet 11(7):e1005400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgement

Research work in the author’s lab was supported in part by NIH grants GM106174 & GM110477. The author is grateful for helpful comments and editing by Jasmine Ayers and Haya Ghannouma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, L. (2019). P53 and Apoptosis in the Drosophila Model. In: Deng, WM. (eds) The Drosophila Model in Cancer. Advances in Experimental Medicine and Biology, vol 1167. Springer, Cham. https://doi.org/10.1007/978-3-030-23629-8_6

Download citation

Publish with us

Policies and ethics